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PREFACE

The results of Mars Probe /Lander studies, conducted over a 10-month period
for Langley Research Center, NASA, are presented in detail in this report.
Under the original contract work statement, studies were directed toward a
direct entry mission concept, consistent with the use of the Saturn IB-Centaur
Launch Vehicle, wherein the landing capsule is separated from the spacecraft
on the interplanetary approach trajectory, some 10 to 12 days before planet en-
counter. The primary objectives of this mission were atmospheric sampling by
the probe /lander during entry and terrain and atmosphere physical composition
measurement for a period of about 1 day after landing.

Studies for this mission were predicated on the assumption that the atmosphere
of Mars could be described as being within the range specified by, NASA Mars
Model Atmospheres 1, 2, 3 and a Terminal Descent Atmosphere of the docu-
ment NASA TM-D2525. These models describe the surface pressure as being
between 10 and 40 mb. For this surface pressure range a payload of moderate
size can be landed on the planet's surface if the entry angle is restricted to be
less than about 45 degrees.

Midway during the course of the study, it was discovered by Mariner IV that
the pressure at the surface of the planet is in the 4 to 10 mb range, a range
much lower than previously thought to be the case. The results of the study
were re-examined at this point. It was found that retention of the direct entry
mission mode would require much shallower entry angles to achieve the same
payloads previously attained at the higher entry angles of the higher surface
pressure model atmospheres. The achievement of shallow entry angles (on the
order of 20 degrees), in turn, required sophisticated capsule terminal guidance,
and a sizeable capsule propulsion system to apply a velocity correction close

to the planet, after the final terminal navigation measurements.

Faced with these facts, NASA /LRC decided that the direct entry from the
approach trajectory mission mode should be compared with the entry from
orbit mode under the assumption that the Saturn 5 Launch Vehicle would be
available. Entry of the flight capsule from orbit allows the shallow angle entry
(together with low entry velocity) necessary to permit higher values of M/CpA,
and hence entry weight in the attenuated atmosphere.

It was also decided by LRC to eliminate the landing portion of the mission in
favor of a descent payload having greater data-gathering capacity, including
television and penetrometers. In both the direct entry and the entry from
orbit cases, ballistic atmospheric retardation was the only retardation means
considered as apecifically required by the contract work statement.

Four months had elapsed at the time the study ground rules were changed.
After this point the study continued for an additional five months, during which
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period a new design for the substantially changed conditions was evolved. For
this design, qualification test programs for selected subsystems were studied.
Sterilization studies were included in the program from the start and, based
on the development of a fundamental approach to the sterilization problem,
these efforts were expanded in the second half of the study.

The organization of this report reflects the circumstance that two essentially
different mission modes were studied -- the first being the entry from the
approach trajectory mission mode and the other being the entry from orbit
mission mode -- from which two designs were evolved. The report organiza-
tion is as follows:

Volume I, Summary, summarizes the entire study for both mission modes,

Volume II reports on the results of the first part of the study. This volume
is titled Probe/Lander, Entry from the Approach Trajectory. It is divided
into two books, Book 1 and Book 2. Book 1 is titled System Design and
presents a discursive summary of the entry from the approach trajectory

system as it had evolved up to the point where the mission mode was changed.

Book 2, titled Mission and System Specifications, presents, in formal
fashion, specifications for the system. It should be understood, however,
that the study for this mission mode was not carried through to completion
and many of the design selections are subject to further tradeoff analysis.

Volume III is composed of three books which summarize the results of the
entry from orbit studies. Books 1 and 2 are organized in the same fashion
as the books of Volume II, except that Book 2 of Volume III presents com-
ponent specifications as well. Book 3 is titled Development Test Programs
and presents, for selected subsystems, a discussion of technology status,
test requirements and plans. This Book is intended to satisfy the study and
reporting requirements concerning qualification studies, but the selected
title is believed to describe more accurately the study emphasis desired by
LRC.

Volume IV presents Sterilization results. This information is presented
separately because of its potential utilization as a more fundamental refer-
ence document,

Volume V presents, in six separate books, Subsystem and Technical
Analyses., In order (from Book 1 to Book 6) they are:

Trajectory Analysis

Aeromechanics and Thermal Control
Telecommunications, Radar Systems and Power
Instrumentation

Attitude Control and Propulsion

Mechanical Subsystems

Most of the books of Volume V are divided into separate discussions of the
two mission modes. Table of Contents for each book clearly shows its
organization,
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INTRODUCTION

Under the original contract work statement it was intended to develop qualifica-
tion procedures and program planning for the selected probe/lander design. As |
pointed out in the Preface, the change in the Mars density-profile estimates, :
as occasioned by Mariner IV resuits, caused significant redirection of the study
effort and a major change in the system design.

Redirection of emphasis and scope of the qualification-procedures portion of the
study also took place at that time. Up to that point, preliminary study of quali-
fication procedures and program planning had taken place for the {irst design -
that of the probe/lander direct entry concept. With the change to the probe,
entry from orbit design concept, the previous work on qualification procedures
was in many respects negated, and future efforts were directed solely to the
entry from orbit design. The results for the latter case are presented in this
book.

Additionally, at the time of redirection, subsystem development status and cri-
tical development test programs were emphasized rather than the former em-
phasis on formal qualification procedures. The previous program planning
requirements were also eliminated.

The redirection also excluded (as far as development test planning was concerned)
consideration of certain subsystems such as the instrumentation, power, and
instrumentation subsystems. |

‘In summary, this book presents development status and test programs for se-
lected subsystems of the probe, entry from orbit design.
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1.0 STUDY REQUIREMENTS

This book (Book 3, Volume III) has been prepared to meet the requirements of
paragraphs 4. 3(2) and (3) of NASA/Langley Research Center Statement of Work
L-5295c, Exhibit D, entitled, "Comparative Studies of Conceptual Design and
Qualification Procedures for a Mars Probe/Lander" dated December 16, 1965.
These paragraphs read as follows:

"4, 3(2) Procedures, equipment and facilities shall be defined for the ground
testing of those components and subsystems which are deemed to have critical

development problems.

"4, 3(3) The Contractor shall study the value and extent of flight tests in the
Earth's atmosphere in the development of subsystems. Trajectory and launch
details of Earth entry flight tests corresponding to Mars trajectories shall be
identified for both scaled and prototype configurations insofar as environmental
conditions are concerned. Degree of similitude achievable with respect to
loadings, subsystem operations, and component actions shall be determined.
The feasibility of checking out, during the flight tests in the Earth's atmosphere,
the electrical, mechanical and communication interfaces with the Bus shall be
determined. "

Consistent with the guidelines given in Section 3.0 of the aforementioned State-
‘ment of Work, the following selected portions of the Probe system were considered:

A(yl) Structure and heat shield (Probe shell)
(2) Sterilization canister
‘(3) Probe-Bus separation system

(4) Attitude control system

(5) Propulsion system, and

(6) Parachute system
Chapters 2 through 7 deal with development ground testing, whereas Chapters 8
through 10 deal with the recommended flight tests. An Appendix is included
which presents a preliminary program plan for the 1971 Probe/Lander mission.
This plan was developed prior to the NASA/LRC redirection of the study effort

and, although no longer directly applicable, has been included for the sake of

__completeness.




SUBSYSTEM DEVELOPMENT STATUS AND CRITICAL
GROUND DEVELOPMENT TESTS

2.0 ENTRY VEHICLE SHELL SUBSYSTEM

The performance of the entry vehicle depends on a number of closely inter-
acting environmental, structural and material dependent factors. Although

the shell elements perform various functional tasks in flight they are exposed
to the same environments. Thus it is desirable to plan the development test
program in such a way that as many tests as possible are integrated to provide
design or performance prediction information for more than one element (com-
ponent) of the system or technological discipline.

In the development of the entry-vehicle shell, it is necessary to establish:

1. The vehicle aerodynamic performance (coefficients) consistent with
the anticipated mission requirements (on-board experiments, com-
munications, payload) and flight profile.

2. The aerothermodynamic environment (heating, loads, pressures).

3. The response of the shell to the environments in terms of the structural,
thermal protection, and thermal control behavior.

4, Manufacturing methods and concepts.

The developmental tests should be conducted in facilities which are capable of
closely reproducing the environmental levels. One of the main tasks in the
planning of development tests is the determination of the degree of simulation
required and the selection of facilities consistent with the time schedule allo-
cated for the program.

Wherever possible recommended tests have been integrated to achieve combined
objectives. For example, combined tests are proposed to determine aerodynamic
performance and environments; aero environments and thermal response in
aggravation areas; thermo-structural behavior and thermal control require-
ments during sterilization and spaceflight; and behavior of heat shield and
thermal control coating, to mention a few,.

No excessive extension of the available technology was found; however, critical
problem areas do exist. In some cases significant lead times are required to
provide the necessary information or to develop fabrication and test techniques
on time. In other cases there is a lack of basic information. Among those
areas are, for example:
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1. An afterbody geometry to provide one stable trim point.

2. The uncertainty in the effect of postulated Mars atmospheres on the
ablative behavior of materials.

3. The stability of honeycomb sandwich conical shells with '"weak"
boundary conditions.

4. The unpredictability of thermal control performance when a complicated
system of joints, and conductive and radiative paths is investigated.

AEROTHERMODYNAMICS

2.1.1 Reference Design Performance and Technology Development
Requirements

Aerothermodynamic analyses provide the environment in terms of the im-
posed thermal and structural loads as well as the vehicle stability and
performance. This involves determining pressure and heating distributions
and aerodynamic coefficients. The development testing should be aimed at
filling basic information gaps and investigating critical areas.

The velocities associated with entry out of orbit are such that radiative
heating does not contribute significantly to the environments; thus only
convective heating need be investigated. A significant reduction in the
development test program can be realized if the ground tests are restricted
in the extent to which atmospheric composition is varied. Considerable
data have already been obtained on the effects of atmospheric composition
on the convective heating., Thus, it is recommended that the ground tests
be conducted on the reference configuration in air with the data presently
available being utilized to account for composition effects. *

In particular, the desired information should be established under real gas
conditions, the relevant parameter in this case being the stagnation point
density ratio, [ /p., which is a measure of the effective specific heat
ratio as well as the shock standoff distance. The simulation of p  /p, is
necessary to ensure adequate determination of the performance and en-
vironments.

The aerothermodynamic testing has been divided into three elements:
(1) the afterbody, (2) the forebody, and (3) the entry configuration com-
prising the afterbody and forebody.

The afterbody development is critical in terms of the overall system re-
quirement. Its primary function of ensuring only one stable trim point
can result in significant penalties not only in weight but in terms of other




system interfaces such as the AV -rocket location. The early phase of the
program would determine if a minimum afterbody be justified and if auxiliary
destabilizing devices such as asymmetries or flaps be needed.

Primary emphasis for the forebody is on the generation of basic design in-
formation, such as pressure distributions and heating distributions. In-
cluded in these tests are the effects of protuberances and cavities, which
will be examined on the reference configurations to ensure the proper local
flow environments and obviate the need for possible parametric studies.

The configuration performance and stability development will require a
complete Mach No. variation as well as testing in a gas other than air to
determine the possible effects of density ratio on the vehicle aerodynamic
coefficients.

Tables I and II summarize the aerothermodynamic development require-
ments and tests. The simulation requirements are shown in Figure 1,

where flight conditions at various critical phases are delineated.

2.1.2 Afterbody Tests

2.1.2.1 Test Objectives and Description

The existing data relevant to rearward stability indicates possible
problem areas; the data, however, include both sting and forebody
contributions which cannot be factored out. The afterbody can con-
tribute significantly to the shell weight both structurally and thermally
thus necessitating ground tests to establish its performance (particu-
larly the rearward stability) and environments. These characteristics
are of significance at low Reynolds Numbers (early entry). The need
for and the effectiveness of rearward destabilizing mechanisms (flaps,
asymmetries, etc.) should also be established. All anticipated pro-
tuberances and cavities should be investigated to determine the local
heating aggravations, The requirements in terms of configuration
and/or modifications to ensure one stable trim point should also be
defined.

The simulation of the critical flight parameters (low Reynolds Number
and high Mach No. ) does not present a problem; however, the desire
to realize the anticipated density ratios simultaneously will require
ballistic range tests in addition to wind-tunnel tests.

Additional problems are associated with the method of model support.
Although sting effects are normally alleviated by minimizing the sting
diameter, it is felt that the sting still provides an attachment point
for the near wake rendering the test data suspect, especially since
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the rearward stability for the candidate afterbody configurations is
nearly neutral near 180 degrees angle of attack. The possibility of
wire supported models or free-flight model testing is suggested.

The anticipated critical flight parameters for the afterbody (see Fig-
ure 1) occur at an axial deceleration of 0.1 g where the initial turn-
around for rearward entry commences. The hypersonic Reynolds No.
simulation requirement is seen to be between 103 and 104, Force
measurements and heating distributions at angles of attack varying
from 135 to 180 degrees should be obtained in this Reynolds No. range.

2.1.,2.2 Facilities, Equipment and Test Conditions

The recommended facilities and test conditions are summarized in

Table III. The rearward stability is determined by three independent
tests:

1. Wind-Tunnel Tests
a. Sting supported (Ames)
b. Free flight (JPL)

2. Ballistic Range (NOL)

The primary emphasis should be on the Ames facility with the JPL and
NOL data utilized to substantiate the results obtained with the sting
supported models. In addition, the NOL data will indicate the effects
of high density ratio upon the stability.

The heating distributions for the basic afterbody will be obtained by
standard procedures (thin-film gage technique). It is recommended
that for protuberances and cavities, thermal sensitive coatings be
used to determine the local aggravations.

The sting mounted wind-tunnel tests will require three basic models:
1) Force measurements model, 2) Thin-film calorimeter model, and
3) Thermal sensitive coating model.

The free-flight models are small in size and simple design and it is
anticipated that ten would be required for each facility (JPL and NOL).
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2.1.3 Forebody Tests

2.1.3.1 Test Objectives and Description

Although radiation heating is insignificant for the entry out of orbit
mission, the shallow angles associated with this type of entry result
in significant portions of the heat pulse at low Reynolds Numbers.
Low-density effects (such as vorticity interaction) as well as entropy
variation effects influence the heat pulse substantially. The latter
effect arises from the growth of the boundary layer emanating from a
region of lower entropy change through the bow shock.

Dynamic analyses indicate that during the heat pulse the entry vehicle

is subjected to large variations in angle of attack, which significantly
affect the thermal design. The stagnation point location during heating
may be discontinuous, being on the spherical nosecap at nominal angles
of attack (less than 30 degrees) and at the maximum diameter region

at higher angles of attack, resulting in a significant alteration of the
heating distribution. The heating in the latter case is dependent upon

the local radius at the maximumdiameter. To reduce the heating by increas-
ing the radius would decrease the drag, anundesirable result.

The forebody development tests should be concerned primarily with the
peak heating and peak loads phase of reentry as shown in Figure 1.

The Reynolds and Mach Nos. present no simulation difficulties.

The forebody ground tests should establish:

1) Pressure distributions and dependence on density ratio

2) Stagnation point heating variation with low Reynolds Numbers
(vorticity interaction).

3) Extent of entropy variation effects on heating.
4) Angle of attack effects onflow field and heating, and

5) Local heating aggravations as sociated with protuburances
and cavities,

Although the Reynolds and Mach No. simulation presents no problem,
the simultaneous satisfaction of the entropy variation along the boundary
layer may be difficult. In addition, the simulation of the density ratio
across the bow shock is necessary to obtain the correct velocity
gradients, not only at the stagnation point, but at the sonic point

as well,

-10-




The ground tests should provide Reynolds No. and angle of attack
variation at hypersonic Mach Nos. consistent with those associated
with the critical phases of entry. The Mach and Reynolds Numbers

at both peak heating and loads are indicated in Figure 1 for the range
of trajectories and atmospheres of interest. Furthermore, to obtain
knowledge of the heat pulse, it is necessary that the Reynolds No.
variation be 1 x 10% < Rop< 5 x 105, The pressure needs only limited
investigation; the density ratio across the bow shock should be at least
10 with a sufficient variation to permit the establishing of the pressure
distribution dependence. The angle of attack variation occuring at
times of interest for structural design are within + 30 degrees and

+ 90 degrees for heating.

2.1.3.2 Facilities and Test Conditions

The recommended ground test program is summarized in Table IV
giving both the facility and the test conditions. Since the simulation
available is not ideal with respect to the realization of both the density
ratio and the entropy variation, the test program will serve as sub-
stantiation. Sufficient variation in the relevant parameters will permit
interpolation and/or extrapolation.

The Cornell Wave Superheater (which provides large density ratios)
in conjunction with the Ames Hypersonic Tunnel tests will be used to
establish the following: 1) Low density effects, 2) Density ratio

effects, and 3) Angle of attack variations on heating and pressures.

The Ames and Cornell heat transfer measurements will be obtained by
means of the thin-film calorimeter technique; the Langley tests will be
conducted utilizing thermal sensitive coatings to establish the local
aggravations due to protuberances and cavities.

The Cornell and Ames tests will require a minimum of two models
each; one instrumented for pressures and the other for heating meas-
urements. Additional models will be required due to the angle of
attack variations desired. The Langley tests will require one basic
model which can be modified for the protuberances and cavities; the
number of models necessary will depend upon the ability to recoat
and reuse.

4 Entry-Vehicle Shell (Forebody-Afterbody Unit)

2.1.4.1 Test Objectives and Description

In order to conduct the trajectory analyses, the complete vehicle
performance characteristics are necessary. These are evaluated in

~11-
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terms of the aerodynamic coefficients which are functionally dependent
Mach No. and Reynolds No. and density ratio, the latter of which may
be used to reflect real gas effects.

Figure 1 shows the Mach No. - Reynolds No. regimes experienced
during entry. Table V summarizes the critical phases and the
attendant flight environments.

The early entry performance characteristics were previously dis-
cussed (afterbody - see Table II). The entry performance charac-
teristics are necessary to ensure adequate convergence during the
critical phases of flight (peak heating, loads, etc.). The primary
coefficients of interest are the static forces and moment derivatives.
Only a cursory look at the dynamic derivatives at hypersonic speeds
is necessary but the investigation should include the effects of mass
injection, The post-entry performance will receive primary emphasis
and will include extensive dynamic testing to ensure that transonic
divergence, if it exists, is within tolerable limits; the existence of
limit cycles would also be determined.

The aerodynamic coefficients Cx, CN, Cm and Cyp, ., should be estab-
lished as functions of Mach No. density ratio, angle of attack and, to
a lesser degree, Reynolds No.

The desired ranges of these parameters are given in Table V. The
hypersonic performance should be evaluated with a density ratio be-

tween 10 and 13 to 1 (10 < p_ /p. < 13) to evaluate the real gas effects.

2.1.4.2 Facilities Equipment and Test Conditions

The recommended facilities and test conditions are tabulated in Table VI.

Extensive angle of attack variations are limited to the hypersonic tests
(Ames Blowdown). All the facilities have provisions for measuring the
dynamic characteristics, however forced oscillation tests should be
conducted in the supersonic and transonic facilities (Langley Transonic
and Unitary Wind Tunnels). In addition to the angle of attack coverage
in the Ames tests, some testing at varying Reynolds No. is recom-
mended.

The ballistic range tests would be used to establish the dynamic
characteristics in conjunction with the forced oscillation tests. In
addition, the density ratio effects on both the static and dynamic
derivatives may be obtained by means of ballistic range shots into
Freon gas. This gas has the advantage of a low sonic velocity (in
addition to the higher density ratios) thereby lowering the required
velocities for a given Mach No.

13-
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Each wind-tunnel facility will require one model except the Ames
tests where two models would be a minimum to obtain the required
angle of attack variations.

The ballistic range requirements depend upon the recoverability of the
individual shots. In the case of the transonic tests low inertia models
are required ( to increase the number of oscillations per shot), Molded
plastic foam models offer a possible means for achieving low inertia;
however their reuse is precluded.

2.2 THERMAL PROTECTION

2.2.1 Reference Design Performance and Technology Development
Requirements

The thermal protection system (TPS) consists of the composite of an
external layer of heat shielding material bonded to the load carrying
structure. The critical problems which arise in the development cycle
are the feasibility of a concept or practicability of meeting the overall
weight limitations (allocations) of the system within the allocated time
schedule.

The practicability of meeting the schedule deadlines manifests itself at
several stages of the development program and is affected by several
factors: a) availability of the heat shield material (ablator); b) availability
of the bonding material; c) system design information required prior to
the design freeze (properties and material characteristics for all com-
ponents); d) materials processing methods needed for a large-scale
manufacturing; e) method of the application of the material to the struc-
ture; f) assurance of confidence in the performance of the system through-
out the mission sequence environments.

The performance of the heat shield and its response to the environment
depends not only on the basic properties of the material itself but also on
the environment it is exposed to. While it is relatively easy to predict
analytically the effect of the substructure on the heat shield material and
verify it during the ground test program, it is extremely difficult to
predict the heat shield performance for a particular application without
an extensive testing program., There are no ground test facilities avail-
able now or projected in the near future capable of simultaneously dupli-
cating or simulating the anticipated flight environment parameters. Such
simulation, of course, would be necessary to assure the conformance of
the preflight prediction with actual flight data for a material which was
not flown before. The necessity of flight testing (assuming the existence
of an extensive ground test program) depends on the degree of the con-
formance required of the design, which in turn depends on the safety

-16 -




margins allowed. It is not possible to design a heat shield with any degree
of confidence without an extensive material characterization program in-
cluding more than just ''simulated" quasi-steady state entry heating arc-jet
tests. The possibility of transient trajectory simulation in the arcs greatly
enhances the predictability.

The mission system and subsystem specifications (Volume III, Book 2 and
Volume V, Book 2) define the requirements imposed on the thermal pro-
tection system by the design selected. The thermal protection must

survive the decontamination and sterilization environments, mechanical
environments, possible exposure to vacuum, low temperatures anticipated
in space, and then perform its thermal function in the entry environment.

A summary of the thermal protection system elements is shown in Table VII,
which indicates the critical items and the general purpose of the tests re-
quired to assure performance during specific phases of the mission.

2.2.2 Test Objectives and Description
2.2.2.1 Heat Shield Material Characterization

The analysis of the conceptual design of the Mars Probe (EFO) contained
in the other volumes of this report indicates that the development prob-
lems usually encountered in the entry vehicle technology exist in this
application as well, and therefore can be handled by the existing tech-
niques and facilities. However, this technology does not allow the
desired degree of simulation of flight parameters during the ground
tmacting mhace. since the simulation of transient heating, enthalpy,
pressure ana nedt puisc is ULLLIC Uil b Uobdadss widied waio,  SREe 0
characterization of materials is feasible in ground tests. The lead
times associated with the transformation of a laboratory material

into a sufficiently characterized and manufacturable item are critical.
Also, the influence of (a) the environments associated with the de-
contamination and sterilization procedures; (b) long time exposure

to space vacuum; and (c) the effect of Martian atmosphere(s) must

be considered in the material selection.

A small body of the material properties and characteristics is now
available having been developed concurrently with the present pro-
gram. Basic understanding of the ablation mechanism for the mate-
rials under consideration has been achieved for the air atmosphere,
and the effect on thermal and mechanical properties of ETO decon-
tamination and the sterilization dry-heat cycle has been partially
determined. The latter is mandatory to predict material performance.
Thus, for conceptual design purposes, it was possible to design and
evaluate the requirements for the thermal protection system. How-
ever, such information is not sufficient for design of hardware to the

-17-
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required degree of reliability since the calculated heat shield weight
fractions appear to be relatively high precluding the use of large
safety factors.

1. Design Information Acquisition for Entry Phase -- The purpose
of the heat shield material test program is to determine the thermal,
optical and mechanical properties, and ablation characteristics of
existing materials for design use (determination of heat shield thick-
ness required) rather than development of new materials.

The program should consist of preliminary screening tests and sub-
sequent comprehensive development tests. No more than four materials
should be used for the screening tests and no more than two materials
should be considered for the development tests: one for the reference
design and one for backup. The Purple Blend, Mod 5 and Cork Silicone
are the most likely candidates as of now. Purple Blend was used as

the reference in the conceptual design studies.

The scope of the screening tests in terms of individual objectives, test
conditions and their range, number of tests and samples, test pro-
cedures and techniques is outlined in Table VIIL. It indicates the
number of tests at various points in the desired range for various
conditions of the specimen prior to test. The number of tests pre-
sented is for the purpose of comparison with the development test
program requirements. The table describes the type of test (including
the candidate facility, where pertinent) to be performed to obtain the
necessary screening data. Two sets of candidate materials and samples
would be expos ’ e
mine the effect of this environment, then one of the set o1 tne sampies
would be exposed to the space vacuum simulation and tests would be
repeated (see Section below).

e 21 m i ~vrnla fivret tn Aater -

After completion of the screening tests, the selected material(s) would
be evaluated in a more comprehensive characterization program as
described in Table IX. This program involves the same and additional
tests as included in the screening tests and will completely characterize
the remaining candidate material(s) to allow final choice of a material.

2. Design Information Acquisition for Sterilization and Spaceflight
Phase -- Information obtained for the entry evaluation will be
used for this phase of the devalppment specifically and is described
here in more detail.

a. Mechanical and Thermal Properties -- The mechanical
properties of the candidate heat shield materials should be determined
after exposure to ETO decontamination, dry-heat sterilization and
exposure to the vacuum and temperature conditions of outer space.
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TABLE VIlI

HEAT SHIELD MATERIALS SCREENING TEST

(PRECONDITIONED) DECONTAMINATED, STERILIZED AND EXPOSED TO STMULATED SPACEFLIGHT
Mission Design Analysis
Element Phase of Problemn Arcas or Test Objectives Test Description Teat Conditions Desired
Concern Requirements
Ablator Entey Selection of efficient 1. Provide basic characteriza- 1. Number of materials not to
lightweight material tion of materials for design cal- exceed 4.
and pr inary design of temp., maass loss,
for the expected thermal | required thickne leading to 2. Environmenta,test parameters
environment (; p lection of material(s) for min, or their derivatives to approach
heat flux and duration, weight fraction (performance the design operating conditions.
enthalpy and pressure) prediction),
3. No. of tests will depend on
reliability requirements.
#) Determine thermal properties | Measurement of thermal conduc- | True virgin materials and three
tivity fully charred aamples
Temp. range -50°F to surface
tempe rature expected
Measurement of heat capacity Same a8 above but 2 samples only
b) Determine optical properties | M. of thermal emi Same as heat capacity
Measurement of transmittance/
reflectance Same as above
¢) Determine other chemical and
physical properties Measurement of density Same as conductivity
Measurement of porosity None for screening
Measurement of permeability None for screening
Measurement of internal rate
constants 3 tomperature rates
d) Determine ablationcharacter-
istics and flow effects Measurement of 1 Five ples Hp /RT,:50-200; qc
parameters as required
Measurement of turbulent ablation
parameters
2. Verifytheoretical ablati M of Tates, 13 samples HmIRT°:50~ZOO;
model usage of degradation para- | weight loss, density ges and | T as by design
meters, surface and re- e distri under (Approx. S00°F at the bond line)
actions, blowing and h i entry for a A ph :air and 2 other
sample transient test,
3. Provide preliminary de
information on mechanical be-
havior of materials to assure
integrity and compatibility with
the structure,
!
a) Determine tensile properties | E: of Five les of each test
stress-strain curves and meas- Temperature range - 150 to
of the strain pproxi 500" F.
b) Determine prossi of Five les of cach test
properties stress-strain curves and meas- Temperature range - 150 to
urement of the thermal strain approximately 500° F.
c) Determine Poisson's Ratio E: of Five les of cach test
stress-strain curves and meas- | Temperature range - 150 to
urement of the thermal strain approximately 500° F,
d) Determine Thermal E: Expe: of Five of each test
atress-strain curves and meas- | Temperature range - 150 to
urement of the thermal strain approximately 500° F
Decontamination/ Changes in material 1. Select material requiring Measurement of selected thermal | 2} sameas for entry but material
ilizati ition and be- i p itioningtreat- | propertiesand h 4 and sterilized
Spaceflight havior during these ment needed to minimize changes | istics. only
phases of missionand due to the decontamination/and
the ensuing difficultics sterilizing cycles and vacuum b) Samebut also exposed to
in cost contral, ma - axposure, simulated space condition.
terial selection, evalu-
ation, designand test
2, Adjust composition to mini- Measurement of mechanical
mize degradation and provide properties a) Same as (8) above
maximum stability
b} Same as (b} above
i f chemical come- a) Material decontaminated and
position by infrared spectro- sterilized, process simulated
. h and gas
graphy studies. b) Aasdecontaminated, sterilized
c) Asexposed to decontamination,
and space conditi
Bond All Phases Bond strength at

elevated temperatures

Provide thermal propertics
for design.

Nothermal screening required,
Manufacturer's data to be used
in preliminary design. (See
also Structures Testing).
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TABLE IX
HEAT SHIELD ABLATOR DEVELOPMENT TEST

(Sterilized and preconditioned)*
Mission Design Analysis
Phase of Problem Area or
Element Concern Reguirements Test Objectives Test Description Test Conditions Desired
Ablator | Entry 1. Determination of H/S weight [l. Provide property & characteris- 1. No. of materials vot to exceed 2.
fraction and prediction of re- kics parameters for design use & 2. Eavir tent .
sponse of the H/S to d predicti of their derivatives to approach the
environments. design operating conditions.
3. No. of tests will depend on reliability
Tequirements.
7. Preparation of H/S Material
specifications m} ine th 1 i of Six virgin met'ls and six fully charred
wity samples. .
Temperatare range -50° to surface tempera
ture expected.
M of heat cap Same as above but 4 samples only
b optical prop of Same a8 heat capacity
of /
reflectance Same as above
<) other chemical & > of density Same as conductivity
Inhysical properties
Measurement of porosity To be determined after scresning tests
Measurement of permeability Same 25 above
Measurement of internal rate Three temperature rates
constants
1d) Determine ablation charac- of bl 10 les Hy, /RT, 50 -200;
teristics and flow effects paraneters. Qe and p as required.
Measurement of turbulent ahlation
parameters. oo Six samples H, /RT, 50-200 o and p as required
R. Verify theoretical ablation model{ Measurement of ablation rates, 25 samples Hm/RTo 50-200;
Rsage of degradation-parameters, |weight loss, density changes and qrc and p as required
74 & i 1 i blow- g ibuti under (wtrocture -as required by design approx.
fing and atmosphere. simulated entry conditions for a 500°F at the bond line)
ple i sample | A h air and 2 other compositions.
transient test.
3. Compatibility with the B. Provide design information on
structure. i ior of
fo assure integrity k compatibility
peith the structare.
k) Determine tensile properties Experimental determination of Five samples for each test
b} Determine compressive stress-strain curves and Temp range-150 to app:
properties ment of thermal strain 500°F.,
) Determine Poisson's Ratio
fi) Determine thermal expansion
Decon- |Effect of Heat shield exposure  [Provide design inforrmation for the
tami to & dnati i See tests for eutry phase, and scregning program.
tion / tion and space vacuum os its fn “as exposed” coadition for
Steriliza-{ fhermo-structaval & thermal con-
tionf frol performance prediction.
Space-
flight
Post Impingement of AV rocket plame Determine phune heating and its Exposure to rocket plume Actaal motor in Vacoom
Separa- |on heat shield. bffect on heat shield performance.
tion
Misc. Assurance of performance and As required by Government specifi-
Envi sati ion of speci cations
‘ments
M ' As: of repr i of [l. Raw matsrials
turing materials, homogenity and in- a) Identify and contral contamnina-
tegrity during exposure to various tiom.
elements. b) Determine batch to batch IV
chemical variation. See description in Section
c} Control moisture.
. Develop process for scale-up Depends on the screening test results and tion of ref s
rom laboratory techniques and
welect fabrication process.
B. Develop nondestructive test
goethod.
6. Verify heat shield process {in-
fluding hurnidity effects)
Bond All phases{Same as for the ablator except no Fequi for ablative test. See Test.
Thermal | All phases{No critical th Pr 1 . i {See Structure Test
Control {problem areas. leompatibility.
3'757? ! . Determine thermal control/
Pen shield material compatibility |See Thermal Control Test.
Structare
Cornpo-
site
Joints, Entry 1. Prediction of H/S 1. lly the effect in a joint teet with Depends on design configuration
Inter- ance in areas where bof agg on P 5 in the envir-
faces, aggravation problems exiet. onment. Measure the erosion
Protub- {See also Aercthermodynamic B. Predict { rates in the vicinity of
erances tests - difficulty in environment the aggravation, together with
prediction.) temperature respanse.
2. Selection of local substitute
i or design
tions to assure performance.

*Unless otherwise noted
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Two sets of test specimens of each material should be fabricated and
subjected to the conditions of decontamination and dry-heat steriliza-
tion as specified in JPL specifications X5-30275-TST-A. After
exposure to decontamination and dry-heat sterilization, one set of
test specimens should be utilized to determine the effects of this
environment. The second group of samples would be exposed to the
vacuum and temperature conditions of space to determine the effects
of the combined environments on the mechanical properties.

At the completion of each environmental exposure the following
mechanical properties should be evaluated and the effect of exposure
determined by comparing the results with properties obtained on
control specimens from the same batch of material: 1) tensile prop-
perties over a temperature range of -100 to 350°F; 2) compressive
properties over a temperature range of -100 to 350°F; 3) shear prop-
erties over a temperature range of -100 to 350°F; 4) dimensional
stability, i.e., weight loss and dimensional changes of test specimen;
5) hardness, shore A or equivalent.

b. Chemical Composition -- The chemical composition of
the candidate heat shield material and their degradation products
should be analyzed after dry-heat sterilization and vacuum exposure
to identify degradation products and assess their affects on 1) the
thermal control coating; 2) antenna windows; 3) instrumentation and
4) control mechanism within the canister, and to guide formulation
studies to adjust ablator chemical composition to minimize degrada-
tion and provide maximum stability.

1) Decontamination and Sterilization Effects -~ The
changes in ablator chemical composition due to above conditions should
be determined as follows:

a) Infrared Spectrophotometric Studies - Samples
of the decontaminated and not decontaminated heat shield material to
be evaluated will be enclosed in infrared gas cells. The cells will be
evacuated several times and filled to a slight positive pressure with
an inert gas such as nitrogen or argon. The entire cell containing
the sample of heat shield will be heated in a laboratory oven at 135°C
for 36 hours. At the end of this period, the cell will be placed in the
beam of the infrared spectrophotometer, maintained at 135°C by means
of heating tapes to prevent any condensation, and the chemical com-
position of the evolved gases determined by a complete infrared scan.

Once the evolved gases have been identified, a quantitative analysis of

the gas mixture will be conducted by infrared spectrophotometry.
Calibration curves will be prepared for each of the components in
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the gas mixture using a vacuum sampling apparatus recently constructed
for the determination of HCI in BCl3.

b) Gas Chromatography Studies -- The results of
the infrared studies will be confirmed and amplified by gas chroma-
tography analyses. Once a qualitative identification of the gases
evolved during exposure has been made, the proper columns for
separation and the proper conditions for quantitative determination
of the gases will be chosen. Gas chromatography will not only con-
firm the infrared work but will provide an analysis for any gases
{such as hydrogen or oxygen) which do not have infrared absorption
bands and are thus not detected by infrared spectrophotometry. Gas
chromatography will also provide a more quantitative analysis on the
total gas mixture evolved from a heat shield material than will infrared
spectrophotometry.

For each material investigated the preliminary study will be conducted
using both infrared and gas chromatographic analyses in a complemen-
tary manner. Subsequent, repetitive studies on the same heat shield
material will be conducted by gas chromatography once the proper
column conditions have been established.

c) Decontaminated and Sterilized Heat Shield
Composition - The studies described in sec-
tions a) and b) above will define the gases evolved from a heat shield
material during sterilization (with and without exposure to ETO). A
companion study will be made to determine the chemical changes in
the sterilized heat shield.

it is entirely possible that the upper portion of the heat shield will
evolve and lose as gaseous products more material than the lower
portion of the heat shield. Therefore, a chemical analysis profile
will be conducted on each type of heat shield material which is sub-
jected to sterilization. Layers of the heat shield material will be
machined off by precise techniques already in use for the analysis of
charred composite materials. The individual layers will be analyzed
for resin and ash content. On the basis of these analyses, selected
layers will be examined by infrared spectrophotometry to determine
changes in the chemical structure of the polymeric component of the
heat shield. In this manner a profile of the changes induced in the
heat shield by sterilization will be constructed.

2) Vacuum Exposure Effects -- Samples of material
which have been subjected to the decontamination and sterilization
cycle will be tested for any possible effect of long termexposure to
the vacuum and temperature conditions of outer space. The material
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will be suspended from the beam of a Cahn balance down into a hang-
down tube. The hangdown tube will then be cooled by an appropriate
bath. The Cahn balance is enclosed in a glass pig and integrally
connected to the hangdown tube so that the entire apparatus will be
evacuated to 1 x 1070 torr. Then the change in weight with time will
be followed automatically and with high sensitivity since the Cahn
balance will detect weight changes on the order of 1 microgram.

If a loss in weight is indicated by the vacuum exposure simulation
tests, the exposed material will be analyzed by the same layering
and chemical analysis techniques discussed above to determine the
nature of the chemical changes induced in the heat shield material.

3. Performance Prediction Testing for Entry Phase -- All in-
formation required for design use is required for performance predic-
tion. However, the ablation tests in the OVERS or similar facility are
conducted primarily to verify the applicability of analytical methods
combined with the use of independently measured properties.

a. Nondestructive Test Development -- Several immediately
recognizable nondestructive problem areas exist for which tests must
be provided to assure reliability of the design.

Experience has shown that for the heat shield the existing nondestructive

test approaches and conventional equipment are incapable of assuring ’
compliance with design requirements of low density or elastomeric

materials. Problems associated with the inspection of these materials

such as low specific gravity which results in high acoustic attenuation

and the possibility of direct application of the heat shield to the sub-

structure which will require one sided radiometric density determina-

tions are not considered insurmountable, however, development of

proper nondestructive test techniques will require new approaches

and facilities,

b. Heat Shield Process Verification -- The process for
fabricating the heat shield should be verified by destructively testing
three heat shield shapes. The ablator will be fabricated as specified
in the preliminary process specification, released at the completion
of the fabrication evaluation phase of the development program. The
shape of the sections produced will be similar to the final design but
may have to be increased in size to provide sufficient material to
conduct the required tests. The data generated will be analyzed to
determine the reproducibility of the fabrication process and to confirm
design properties,
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The following properties will be determined: 1) tensile properties,
2) compressive properties, 3) shear properties, 4) ablative charac-
teristics, 5) thermal conductivity, 6) specific gravity, 7) thermal
behavior (TGA), and 8) porosity.

2.2.2.2 Bond Performance and Properties

1. Thermo-structural Design Information Acquisition and
Performance Prediction Testing -- As in the case of the

heat shield material, no new bonding agents will be developed but
existing materials will be selected. No critical problems specific to
the probe development are expected to arise; however, a proper
bonding of the heat shield material to the structure is of utmost im-
portance in the fabrication of the shell. The information necessary
for design includes the mechanical and thermal properties especially
the bond shear and tensile strength, thermal conductivity, heat capacity,
and temperature limitations. These will have to be obtained in the
course of the program as they are needed for design and evaluation
of performance during all phases of probe development and flight.

The objectives of this program are to obtain one or more suitable
adhesives for bonding the various heat shield materials to the sub-
structure. A wide range of environmental conditions will be en-
countered during storage and in flight. Bond-line temperatures may

be as low as -100°F. Vibration, acoustic noise, shock, acceleration,
sterilization and vacuum exposure are other environmental conditions
that will be improved during the life of the probe. The adhesive that
bonds the heat shield to the substructure of the vehicle has to withstand
thermal and mechanical stresses with a maximum degree of reliability.

The program recommended to select an adhesive will include: 1) Com-
paring various classes of structural adhesives by means of shear moduli
determinations at several temperatures. The classes of adhesives
include epoxies, modified epoxies, silicones and other elastomers.

2) Selection of one or more classes of adhesives will be made from a
comparison of shear modulus and shear stress versus design allow-
ables if feasible. A more intensive evaluation of physical properties
and determination of the resistance to the effect of environmental and
simulated flight conditions may also be required. Representative
adhesives would be tested both as a component in a composite struc-
ture and separately as a material to determine strength values in
tension, compression and shear as a function of temperature, and

time at temperature. Resistance of the composite to thermal shock
sterilization and vacuum exposure will be measured.
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2. Manufacturing Concepts and Methods Test

a. Bonding Process and Surface Preparation -- Assurancc
of the integrity of the heat shield bonding to the structure often presents
critical fabrication problems. For example, one of the concepts of
attachment of the Purple Blend Mod 5 ablator to the forebody structure
anticipates use of fiberglass ply with loops extending into the ablator
to improve the strength of the activated (charred) material as a part
of the bonding concept. Such a concept may require a great deal of
development work to assure performance of the full-scale article.
The anticipated test program would include the following efforts:

1) Methods will be explored for improving existing
adhesives of the selected class or classes if required. The effects
of loops, fillers, and fibers on physical properties will be determined
with the objective of improving adhesive strength and reliability.

2) The several factors involved in the bonding process,
including methods of application and curing conditions, will be investi-
gated for those adhesives that have been selected for intensive evalua-
tion. Procedures that are most readily applicable to production will
be emphasized, but the physical and thermal properties of the final
structure in terms of design requirements will be the most important
criteria for the final selection.

3) General methods of surface cleaning of substructure
surfaces will be evaluated concurrently. These methods include:
chemical cleaning-non etch; chemical cleaning with surface etching.

The criteria to be used for the selection of a method of surface
preparation will be attainment of reliable bonds of adhesive to ad-
herents that meet design requirements as well as a process that is
feasible for full-scale production.

4) The heat shield materials under consideration are so
dissimilar that primer systems will be of great importance. In the
case of glass-reinforced silicone cork, surface treatment will be
necessary. There is very little information available to date on the
bonding of glass reinforced silicone cork. Were this type of material
selected for use, a development effort will be required to attain suit-
able cleaning methods.

b. Nondestructive Test Development -- As noted the require-
ment of a reliable heat shield-to-structure bond is often of vital im-
portanceé to the performance of the flight article. Thus it requires a
reliable method of assurance of bond integrity to avoid unbonded areas.
For structures of the anticipated size the problem may be critical.
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The presence of the low density or elastomeric heat shield material
results in a large acoustic impedance mismatch and poor ultrasonic
and infrared response to unbonding and presents a unique bond inspec-
tion problem. Again, the problem requires effort beyond existing
technology.

2.2.2.3 Ablator/Bond/Structure Composites' Performance

Ablator/ bond and ablator /bond/structure composites are certainly the
important building blocks of the heat shield, since they perform the
basic thermal protection function during entry; however, they do not
present (in composite form) any critical thermal heat shield develop-
ment problems. The tests required to verify the thermostructural
performance prediction are described in Section 2.3 (Structures
Development).

2.2.2.4 Heat Shield/Thermal Control Coating Composites

The presence of the thermal control coatings on the heat shield is not
likely to affect its primary function during the entry. Therefore no
development program is required from the heat shield design point of
view. The inverse problem does, however, exist. The development
program of thermal control system (Section 2. 4) describes the neces-
sary effort. Also the development work in the area of the heat shield
material fabrication and formulation includes effort directed toward
minimizing the detrimental effects of ablator outgassing during critical
phases of mission (sterilization and flight in space vacuum).

2.2.2.5 Joints, Interfaces, Protuberances Behavior and Miscellaneous
Thermal Development Tests

As the detailed design of the flight capsule system progresses and
manufacturing assembly procedures are established, the ideally pro-
jected, smooth and uninterrupted heat shield surface is perturbed.
Various subsystems or components are located in the vicinity of the
heat shield disturbing the flow field and locally increasing the heat
inputs; manufacturing joints, access or attachment points for other
parts of the system may create local ablator discontinuities, cavities,
flats or protuberances; provision of a separable nosecap to facilitate
TV operation may create local disturbance of heat flow pattern; or
operation of the AVrocket may result in additional heating from the
Plume.

Some of these problems may be solved analytically, but most will

require separate developmental tests either to provide direct experi-
mental information for the thermal design or to establish the flow
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field in the vicinity of aggravations. Some of the projected tests are
indicated in Tables VIII and IX. Others will have to be tailored to the
actual geometry of the anticipated source of the problem. The aero-
thermodynamic tests leading to the determination of the flow field and
heating in the vicinity of protuberances were described previously.

The criticality of the problem is best illustrated by some of the similar
tests indicating increases in local heating of an order of magnitude. In
such cases, local heat shield material would have to be changed and
higher density inserts provided. This in turn would affect manufacturing
methods and create secondary discontinuities.

Arc tests as well as testing in rocket engine exhausts to determine
aggravations are recommended.

1. Protuberances -- A thermo-structural design evaluation test
is envisaged to ensure the design adequacy of the capsule heat shield
and structure in the vicinity of the attitude control nozzles. The out-
board nozzle bow-shock and body boundary-layer interaction will create
increased local heating and heat shield degradation.

The test program may utilize the rocket engine exhaust facility at the
Malta test station in upstate New York. This facility, while not simu-
lating the reentry gas flow chemistry, can accommodate a model up
to 12 inches in diameter and subject it to the following maximum
conditions:

Heat Flux 400-900 BTU/1b
Enthalpy 2450 BTU/1b
Shear Stress 10-20 1b/ft2
Stagnation Pressure 10 atmospheres
Total Temperature 5940°R

Test Duration 200 seconds

Similar flow-field interaction programs have been conducted in this
facility on finned bodies as well as other types of protuberances.

The proposed test program will utilize an 10 x 10-inch full-scale
section of the heat shield, structure and outboard attitude control
nozzle cluster and subject this prototype model to the rocket exhaust
environment which most nearly simulates the peak entry flight con-
ditions, Data acquisition for this test will be completely optical,
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photographic and pyrometric, together with the appropriate pre- and
post-test dimensional change data.

2. Surface Gaps and Interfaces -- The general concern is for
possible damage to the heat shield and backup structure due to accel-
erated erosion and heating at a cavity. The cavity may originate from
an interface or it may be a break in the heat shield for such items as
the ACS cold-gas jets. A surface cavity degrades heat shield per-
formance in two unpredictable ways:

a. FErosion -- at the cavity may be accelerated due to in-
creased local shear and heating on a structurally dis-
continuous ablative surface.

b. Heat Transfer -- at the bottom of a cavity may be
accelerated, thus exposing the backface to intolerable
temperatures.

The complexities of the interrelated effects on the flow field, heat
transfer rates, and cavity erosion prevent their direct solution in a
mathematical model for heat shield design. To assure a successful
design the gaps such as the one between the nosecap and main body
of the vehicle may be tested using a scale model in the Malta test
facility. ‘

Data acquisition for this test will be the same as for the protuberance
tests described in the previous section.

2.2.3 Test Facilities, and Equipment

It was noted in the preceding sections that the critical problem to be en-
countered in this development program was not so much the availability of
the technology to perform the testing but rather the time element required

to scale the material up from the laboratory status to a full-scale manu-
facturable product, and to actually test the final product. It is thus of
essence to have readily available test facilities and equipment and estab-
lished techniques to perform the necessary tests. Such facilities, equipment
and operating procedures ag are required are described in the following
sections.

2.2.3.1 Thermal and Optical Properties Testing

A summary of equipment and its operating units for various thermal
tests is given in Table X.
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TABLE X

THERMAL PROPERTY DETERMINATION EQUIPMENT AND TEMPERATURE RANGE

Equipment
Temp
Property Equipment Range
Thermal Guarded Hot Plate -250 to 1000 °F
Conductivity Radial Flow 500 to 5000°F
Enthalpy Method of Mixtures -320 to + 1800°F
Specific Heat Differential Scan Calorimeter -150 to + 900°F
Method of Mixtures -320 to + 1800°F
Bunsen ICC Calorimeter -320 to + 2500°F
Pulse Techﬁique +1500 to + 5000°F
Emissivity Barnes Radiometer to + 5000°F
Copper Sphere -200 to + 3000°F

Automation of the guarded hot plate apparatus would offer the capability
of measuring 14 tests per unit used (each test consists of two speci-
mens and five temperature levels) in 1 week. Automation of the
specific heat apparatus would provide a capacity of 35 tests (each
consists of five specimens, 16 measurements of enthalpy change from
five different temperature levels in 1 week. Automation of both of
these tests would significantly reduce the manhour requirements

that are needed for non-automated systems.

2.2.3.2 Chemical and Other Physical Properties Testing

1. Density -- A Beckman Air Comparison Pycnometer, Model 930,
could be used for the measurement of the volume of solid samples. A
modification of the pycnometer to permit purging of the sample by
vacuum pumping and measurement in an inert atmosphere of nitrogen
or helium permits the measurement of true volume of active materials.
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The sample size must be such as to fit in the cylindrical holder which
is 1.5 inches in diameter by 1.5 inches in height. If possible, solid
materials should be geometrical in shape so that the bulk volume may
be determined by micrometer measurements. If the sample is not
geometrical, the bulk volume may be determined, after measurement
of apparent volume, by immersing the sample in molten paraffin. The
temperature of the sample is allowed to come to equilibrium with the
temperature of the wax, then removed and cooled to room temperature.
Any excess wax should be removed by shaking the sample while the
wax is still molten. This process impregnates the open pores with
solid wax which allows measurement of the bulk volume. The weight
of the sample is taken before the wax treatment.

Measurements of bulk density by weight and volume measurement are
very precise. Duplicate samples are sufficient.

2. Porosity -- Various means of measuring porosity are used.
An apparent porosity may be calculated from the apparent and bulk
volume. Likewise the total porosity may be determined from the
bulk density (BD) and the true density (TD). The true volume of the
material (excluding the volume of open and closed pores), is deter-
mined by grinding the sample to fine particles and measuring the
volume occupied by the particles in the Beckman air comparison
pycnometer. The percent true or total porosity may then be calcu-
lated as 100 (TD-BD)/TD.

For pore-size and pore-volume distribution the Amino-Winslow Porosi-
meter [ASTM Bull., No. 236, 39 (1959)] could be used.

3, Permeability -- The gas permeability of polymer is a basic
property of the material independent of specimen geometry. It is
related to the diffusion rate and solubility of a gas in a material by
the equation P = DS where P = gas permeability, D = diffusion rate
and S = solubility. The gas permeability is normally assigned a value
identical to the gas transmission rate of a specimen of unit thickness.

Gas transmission rates should be measured by ASTM Method D1434-63
Gas Transmission Rate of Plastic Film and Sheeting. The gas trans-
mission rate is the steady-state volume of test gas that passes through
a known area of a specimen of known thickness per unit of time, It
must always be related to specimen thickness and test temperature.
Thus, if specimens of various materials are measured in the form of
sheets of equal thickness at one temperature (room), a relative com-
parison of gas transmission may be made. For gas transmission
rates a minimum of three specimens should be tested at each condition
of test material, gas and pressure.
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If absolute gas permeability is desired, the rate of gas transmission and
the diffusion constant will be determined by the time lag technique. The
apparatus designed by Yasuda and Stannett [ J. Polymer Sci. 57, 907-
-923 (1962)] , should be used.

4. Thermal Gravimetric Analysis (TGA) and Differential Thermal
Analysis (DTA) -- Small powered samples are suitable for both TGA
and DTA. Both methods are very reproducible so that two or three
curves are sufficient to characterize a material in any one atmosphere.

TGA-DTA thermoanalysis equipment manufactured by the Harrop Pre-
cision Furnace Company could be used for TGA to 1600°F and DTA to
1900°F. A TGA apparatus assembled from a Lahn microbalance, a
Marshall Pt-Ir wound furnace, and F&M temperature programmer
and a Houston X-Y recorder could be used for work to 2800°F with
milligram size samples.

2.2.3.3 Ablative Characteristics Testing

Table XI presents a summary of the operating characteristics of the
Avco arc facilities. It should be noted that the tests could be conducted
in facilities other than Avco's if available and if they provide better
simulation of entry parameters.

1. Model 500 Arc -- The Avco Model 500 plasma generator is
generally used in support of screening test programs and for obtaining
fundamental ablation data. The gas environment most used consists of
a subsonic jet (1/4 to 1 inch in diameter) utilizing air as the working
fluid (although gases such as Np, helium, CO,, O, argon, or mix-
tures thereof have also been used), The sample can be either flat
face, hemispherical, or conical, and can be instrumented., Gas en-
thalpies and heat-transfer rates (flat-faced cylinders) that can be
generated cover the range of 600 to 10,000 Btu/lb and 25 to 1300
Btu/fté-sec, respectively.

2. OVERS Arc -- The OVERS facility consists of an electric-arc
gas heater with a 3-inch diameter exit nozzle, and a 500-kw rectifier
and is connected to a 33,000 ft3/m (at 1 x 10-1 torr) central vacuum
system through a 24-inch throttling valve. Arc operation is in nitro-
gen with 23 percent oxygen injection in the arc plenum . OVERS is
capable of operation at enthalpies up to 26, 500 Btu/lb and at pressures
in the range of 0.0l atmosphere.

The usual test technique that is used for the simulation of heating and
environment flow conditions is that of the stagnation or splash model.
The splash test is arranged such that the heated air exits from the
supersonic nozzle to the ambient (vacuum) surroundings; the sample
is externally mounted and swung into the stream, The sample size
can be varied from 1 to 4 inches in diameter and the sample shape is
usually a flat-faced cylinder.
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a. Trajectory Simulation -- An attempt should be made to sub-
ject samples to simulated flight trajectories. Inasmuch as the OVERS
arc can be utilized in such a continuous test by changing mass flows
and power, it is suggested that such a series of tests be run on those
materials which appeared promising in the previous steady-state tests.
When changing test conditions, approximately 20 to 40 seconds are re-
quired to make the necessary adjustments in gas mass flow and power,

b. Detailed Design Simulation -- The effects of bond lines
filled joints, protuberances, gaps, etc., on local material performance
should be tested.

3., 10-Mw Arc Facility -- The basic components of the arc include
a 4-inch-diameter spherical plenum chamber into which four individual
arc heads exhaust radially. The four arcs are mounted in a common
plane and are equally spaced at angles of 90 degrees around the periphery
of the plenum chamber. The heated air mixes in the plenum chamber
and exhausts through an exit nozzle in a direction perpendicular to the
plane of the four radial plasma generators.

The power supply for the unit is a group of 2080-12 volt heavy-duty

truck storage batteries. The arcs are initiated by means of fine tungsten
wires. Air is injected tangentially into the arc chambers through sonic
orifices and flows out of the exit nozzle after passing into the plenum
chamber. When the power breaker is closed, steady-state values of

the current, voltage, and plenum pressure are achieved in less than 1
second.

The 10-Mw arc is a flexible test facility which can be utilized in several
configurations. The simplest of these is the splash test in which the
material specimen is placed in the laboratory atmosphere directly in the
exhaust jet from the plenum chamber. This configuration produces
laminar, stagnation-region flow over a flat-faced specimen.

The subsonic pipe test is used to obtain turbulent heat of ablation data
on ablative materials., In this type of experiment, a pipe of the material
to be tested is mounted in the facility between the plenum chamber and
the sonic exit nozzle. The high-enthalpy air in the plenum chamber
flows through the specimen and exhausts into the atmosphere after
passing through the water-cooled sonic nozzle downstream of the speci-
men. The standard sample configuration employed in this type of ex-
periment has inside and outside diameters of 1.25 and 3.0 inches, res-
pectively. The overall specimen length is 5.0 inches.

In performing a subsonic turbulent pipe test in the 10-Mw facility, it is
not possible to make observations of the ablating surface during the ex-
periment. Hence, certain input parameters (surface temperature,
emissivity, surface radiation, and the time at which ablation starts)
must be arrived at by use of experimental measurements obtained in
other arc facilities (Model 500 arc) or computational procedures. Flow
conditions within the pipe sample are assumed to be such that a turbulent
boundary layer exists rather than fully developed turbulent pipe flow.
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In the sonic nozzle test procedure, the water-cooled sonic exit nozzle
usually employed is replaced by a nozzle fabricated from the material

to be tested. The nozzles used in this type of test have an initial throat
diameter of 0.50 to 1.2 inches. Since the throat diameter increases
with time due to material ablation, and the air mass flow through the
sample is maintained at a constant value, arc-plenum pressure decreases
through a major portion of the experiment. In general, arc efficiency
tends to increase with decreasing pressure; hence gas enthalpy increases
throughout the test. As a consequence of these variations, the sonic
pipe test can be considered to be transient in nature. This is in marked
contrast to the quasi-steady experiments performed with the subsonic
pipe test technique.

4. ROVERS Arc Facility -- The convective splash tests using a
5-inch nozzle exit diameter and tests requiring a model stagnation
pressure of 0.1 atmosphere could be carried out in the facility referred
to as the radiation orbital vehicle reentry simulator (ROVERS).

This facility is currently in the final checkout stages of its construction.
The combined convective and radiative facility, utilizes four radiation
sources together with a family of convective arc sources depending upon
the desired jet enthalpy and pressure level. The double-walled, water-
cooled, test tank is 6 feet in diameter and 16 feet long. This tank will
be able to accommodate samples 6 to 12 inches in diameter. A probe
table is being constructed and will be available to handle the various
diagnostic probes (pressure, enthalpy, and heat flux) as well as sample
models. Several viewing ports are present to allow for additional in-
strumentation to study material behavior.

Convective heating simulation is provided by a centrally located arc
heater such as used in the OVERS arc. In addition a 1500-kw high en-
thalpy arc heater is currently being developed to expand the test range
to higher pressures (up to 3 atmospheres) at comparable enthalpies.
For convective splash tests, the ROVERS will be operated in a manner
very similar to that of the OVERS.

The radiant sources that are being used in the ROVERS facility are
lamps using a vortex-stabilized arc concept. A separately excited
magnetic field diffuses the discharge in the anode region.

The ROVERS arc utilizes (at present) the operational arc head used on
the OVERS facility. As part of the continuing Avco arc-simulation pro-
grams, additional arc heads are in various stages of development and
will be incorporated into the ROVERS facility as they become available.
It is planned in the near future to have an arc head available on the
ROVERS facility to cover the pressure range of 10 torr to atmospheres.
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2.3 STRUCTURES

2.3.1 Reference Design Performance and Technology Development
Requirements

The structural development test plan represents the minimum types of tests
required to obtain design information and verify performance to ensure that
an efficient structural design is evolved.

The scope of the tests depends to a great extent on the criticality of the
structural weight fraction. If there is an ample allowance in the capsule
system for structural weight, and if conservative design practices may be
used with large margins of safety in areas of uncertainty, the number of the
tests can be minimized. If, however, weight restrictions require that more
or less unconventional or untried methods be used for analysis, with small
margins of safety, more extensive testing will be required to verify theore-
tical analyses and performance predictions.

The development plan is divided into two categories: tests for design infor-
mation and tests for performance predictions. The division depends to a
degree on whether a component can be treated separately or has a major
interaction with a non-structural element.

The major design requirements for development tests occur in the entry
shell structure. The reference design consists of a honeycomb sandwich
conical shell stiffened by a ring at the forward and aft end with another inte-
gral ring serving as a hard point for attachment of the payload.

There are many possible modes of failure for the sandwich shell and honey-
comb core in which specific test data is lacking - for example; the general
instability of conical shells is based on test data obtained for homogeneous
isotropic cylinders. The edge restraints in the tests also do not simulate
the actual elastic restraints that occur in the reference design. In addition,
core strength requirements for the design were determined using data ob-
tained from tests of flat plates and columns.

In other areas, such as the internal structure, numerous assumptions have
to be made in order to reduce the size of the analysis effort. In this rela-
tively complex structure, in some cases, it will be more economical in time
and cost to test rather than analyze in detail a subcomponent.

The analysis of the structure for dynamic launch environments generally
uses a combined analytical and experimental approach. A mathematical dy-
namic model of the structural system is developed and then modified by the
results of vibration tests. The improved mathematical model is then used
to predict the response of the structure to other dynamic environments.
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The tests described therefore range from obtaining data which is not pre-
sently available for a certain class of structures to more or less conventional
tests which directly support the design effort. A summary of the structural
tests recommended is shown in Table XII. A more detailed description of
the recommended tests is given in Table XIII and described in the sections
following.

2.3.2 Entry Shell Structure

2.3.2.1 Design Information Acquisition for Entry Phase

1. Conical Shell-End Ring Stability -- Published test data for
buckling of conical and cylindrical shell is applicable only to shells
whose edges are either simply supported or clamped. The configuration
of the blunt-cone entry shell requires that the outer edge of the shell be
suitably supported so that the full strength of the shell corresponding to
at least a simple support condition can be developed. An analysis was
developed which estimates the stability of the ring-shell combination
assuming that inextensional deformation is applicable. Since the re-
sulting ring weight can constitute a significant fraction of the shell
weight, verification of the analysis is required before a configuration
freeze.

The objective of the test will be to verify the theoretical analysis of the
shell-ring stability. These tests will be conducted over a range of cone
angles, relative stiffness of ring and shell, and pressure distributions
both symmetrical and unsymmetrical. Before conducting the shell-ring
tests, measurements are necessary to determine the stiffness of the
rings since there will be a reduction of the effective moment of inertia
of the cross section due to the curvature of the rings. This effect can
be predicted for rings of circular or rectangular cross sections, but

no analysis is available for arbitrary cross-section geometry.

The boundary conditions of the shell-ring structure are very important
considerations in the stability tests. The external pressure must be
developed on these shells without imposing any external restraint or
force on the elastically supported edge. This condition could be achieved
by supporting the conical shell at the small forward end in a subsonic
wind tunnel. The large end would then be free to deform into the buck-
ling pattern associated with minimum pressure. The wind tunnel would
be required to develop a differential of approximately 2 1b/in2 between
the external and internal pressure.

To verify the theoretical analysis, a quarter-scale monocoque shell
structure would be adequate.
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TABLE X1t

STRUCTURAL DEVELOPMENT TESTS
Element Mission
Phase Design Analysis
of Prohlem Ares or Typical Test Facilities &
Cancern Requirements Test Objectives Test Description Test Conditions Desired Equipement
[Entry Entry Conical Shell-End Ring [Verify the 11 of the of asa 1. Force free v 1. & wind tannel
{Shell Stability phell-end ring stability fauction of relative stiffness of at large diameter.
{Structure -1 ehell and ring, pressure distribu-}2. 1/4-scale or less
tian. 3. Stiffness simmlation of full-
scale structure not required
4, Differcatial pressure less
than S /i 2
[Entry Honeycomb Sandwich Verify theoretical analywis and obtain | M of the of 1. Hy P plas 1. F P
Conical Eotry Shell enpirical design data for failure honeycomb sandwich shell as a axial tension by partial vacoum in interior of
stability ing general itity, ction of f; heet thi 2. 1/4-scale or less shell
fxiracell buckling, faca-sheet wrink- | core depth, core i and 3. i not feasi- | 2. External {orces applied by
fling, core crushing, and coreshear. cell size. ble doe to gage limitation hydraulic jacks through lcad cells
4. Differential pressure less than|
5 pai.
Entry Shell Strucinre Verify method of £ mode shapes and 1. db : 4 1. El shaker
Dynamics jand mode shapes of entry shell struc-| frequencies of conical shell struc-j associated with actual flight 2. Adr jet shaker
fure ture as a function of shell stiff- conditions
ness, ring stiffness, and homey- |2. Frequency from 0.5 to 1000
comb core depth cps
Sterilization {Ci ihility of abla- [Verify dicted strains, Fall le ablator and 1. and sup~ | 1. Oven
fand Space- {tion and i and of safety b3 d to ii b ports of adj: Space chamber
Flight and cold soak exvironment
Entry Thermal stresses due- ([Verify prec strains, Full le entry shell with tem- {1. Critical temperature gradient
to entry and of safety P i 3 ‘with load -
gradients quartz lamp radiant heaters ing
£. Selection of £
yuring turing process to mini-
mize imperfections
will redoce streagth of
entry shell
\Joints, P of 1. margin of safety for Specific tests will be to |[Static, y and shock-
[Fittings, issi 1 details design pte under d and iroanl critical loading for each |icading as determined by prior
{Attach-~ Ioading particular component analysis,
hments 2. Provide design data such as stiff-
and Bonds, pess characteristics for static and
m 3 dysi
Ablator Effoct of i data for of of b 1 -
cycle on mecharmical jablator and structural compatibility perties after exposure to sterili- | 1. Simmlated sterilization
properties of ablator ration cycle: cycle
a) Stress-strain curve
b) Thermal strain
) Dimensional stability
Bpaceflight {Effect of spaceflight [Provide desxign data for dysis of of ical pro- |1. Prolonged exposure to simu-
mnd Entry {vacswm and thermal jablator and structure ility perties after exposure to space- {lated spaceflight vacuum environ-
cycling on = 1 fand & eflight and flight vacoum and thermal cycle. |ment
properties jentry 2. Thermmal cycle as predicted
by analysis
3. Measurement made both in
vacuum and ambient pressure
dj 1. Ground and vib [Provide design information
S th. i h istice regquired 1. Measurement of static in- 1. Static-force deflection mea-
2. Launch |for use in static and finence coefficients surement at critical locations
3. Entry dynamic avalysis 2, Measurement of natural fre- determined by analysis
4. Para- quencies of components 2. Sirusocidal frequency sweeps
chute De-
ployment
1. Ground [Performance of Com- [Verify performance prediction of 1. Sizmlated external forces. 1. Critical static forces to be
dling  |plete d struc- P d and inertial reacti
2. Launch |ture applied to structure at critical 2. Parachute deployment 18, 000
3. Para- locations determined by prior pounds
chute De- analysis 3. Vibration
ployment 2. Simulated vibration input at 20 g's 2 to 50 cps
4. Entry critical locations 1.5 g's 50 to 300 cpa
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2. Honeycomb Sandwich Conical Entry Shell Stability -- The pre-
sent analysis of the sandwich wall entry shell utilizes theory developed
for homogeneous isotropic conical shells. The analysis assumes that
the core is rigid and uses the concept of effective wall thickness and
effective Young's modulus when applying the homogeneous isotropic
theory experimental results. The core density, which is proportional
to its strength, was chosen to be no less than 3 percent of the density
of the face-sheet material. This conservative value, based on test
results of plates and columns, was selected to account for the various
types of failure modes associated with honeycomb sandwich construction.
These failure modes can be defined as intracell buckling, face-sheet
wrinkling, core buckling and crushing, and core shear. In addition,
there is the possibility of coupling of one of these modes with a general
instability failure of the shell.

Since the honeycomb core represents a significant fraction of the total
shell weight, a decrease in the density ratio would result in a meaningful
weight reduction. To accomplish this, applicable test data is required
relative to the failure modes described above.

Another related problem, for which sufficient test data does not exist,
is the allowable minimum face-sheet thickness for a sandwich structure
which will give repeatable test data. A weight reduction of the shell
structure of up to 40 percent could be achieved if the face-sheet thick-
ness could be reduced to the theoretical value required for strength

and stability.

The present analysis shows that the axial tension in the shell aft of the
payload has a small influence on the stability of the shell. There is
presently no data to confirm this analytical conclusion. The objective
of the tests is to verify theoretical analyses and to obtain empirical
design data where theoretical analyses are not available or feasible.

Honeycomb sandwich construction parameters such as cell size, core
material, face-sheet thickness and core depth, will be varied. The
shell parameters will include cone angle, diameter and slant length.

The majority of the structural shell tests would be conducted using a
hydrostatic pressure. Data could be obtained on 1/4-scale models

using a differential of less than 5 1b/in2 between the external and internal
pressure. Precise geometrical scaling will not be feasible due to mini-
mum core depth and sheet thickness limitations.

To verify that axial tension has a negligible interaction with the hydro-
static critical pressure, tests should be conducted on identical shells
with identical external pressure with the axial force reacted at either
the small or large diameters.
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3. Entry-Shell Structure Dynamics -- The critical dynamic loading

on the entry-shell structure is expected during entry of the flight capsule.

This dynamic loading is associated with the rigid body motions of the
capsule whose frequencies are generally less than 6 cps. Calculations
of the natural frequencies have shown that typical entry shell structures
have frequencies as low as 8 cps occurring in the second or third har-
monic. Coupling of the structural dynamics does not appear to be a
problem since the major component of the unsymmetrical external pres-
sure loading occurs in the first harmonic; this corresponds to a higher
structural frequency than the second and third harmonic. However, the
analytical data used in the analyses have not been fully verified by exper-
iment. Boundary conditions, payload-shell attachment structure, and

the base-ring structure also affect the accuracy of the analytical solutions.

The analyses also use the concept of equivalent thickness and Young's
modulus in order to apply the techniques developed for homogeneous
isotropic structures to honeycomb structures. The validity of the me-
thods and results have not been demonstrated experimentally.

The frequencies calculated also assume that the shell is unstressed.
Analyses of idealized shell structures have shown that the natural fre-
quency of shells are reduced when stresses approach the critical buck-
ling stresses. The ratio of applied loading to the critical buckling load
at which this effect becomes important should be verified by experiment.

The objective of these tests is to verify the basic analytical methods of
predicting the response of the conical entry shell structure to dynamic
entry loads by measuring the frequencies and mode shapes of monocoque
and ring-stiffened shells.

To determine the effect of shell stresses on frequency, tests should
also be made of shells under surface pressure loading. Tests should
then be made on honeycomb sandwich shells to determine the validity of
analytical techniques when extended to sandwich shells.

For the majority of the tests the shells would have simulated boundary
conditions associated with actual flight conditions. The shell modes
will be excited by either electromagnetic shakers or air jet shakers.

To determine the affect of prestress on the natural frequencies, an
external surface pressure will have to be applied which will probably
preclude the simulation of flight-boundary conditions. The applied
pressure will be less than 5 lb/in2.
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2.3.2.2 Performance Prediction for Sterilization and Space-Flight ‘
Phases

The necessity of full-scale performance tests for the compatibility of
the ablator and substructure during the sterilization heat cycle and the
subsequent space-flight temperature distribution depends primarily on
the selected ablator material and the expected temperature ranges. If
the results of the mechanical property evaluation tests of the ablator
indicate that the margin of safety throughout the mission sequence are
large, these tests would not be required. However, if performance
predictions tests of the thermal control system are required, then
measurements of strains and deflections during these tests would be
worthwhile,

The objective of these tests is to verify predicted strains, deflections
and margins of safety during the sterilization heat cycle and the subse-
quent space-flight temperature distribution.

The full-scale heat shield will be subjected to the sterilization heat cycle
and subsequent space-flight temperature environments. The structure
will be supported in a manner simulating the restraints of the internal
structure and afterbody.

2 3.2.3 Performance Prediction for Entry Phase

The necessity of full-scale performance tests of the heat shield with
simulated entry temperature gradients depends on the mechanical pro-
perties of the ablative material and margins of safety predicted in the
thermal stress analysis of the composite heat shield structure.

The objective of the tests is to verify performance predictions of the
thermal stresses and displacements in the ablator and substructure due
to entry temperature gradients.

Temperature gradients due to entry heating will be developed by quartz
lamp radiant heaters. To simulate the actual gradients as a function of
time, the thickness of the ablator will be reduced if necessary, and the
power to the lamps will be controlled by a programmed feedback con-
troller.

3 Joints, Fittings, Attachments and Bonds

2.3.3.1 Design Information Acquisition for Complete Mission

The flight capsule structure has many joints, fittings, attachments and
adhesive bonds which undergo many combinations of loading in combin-
ation and in sequence, both static and dynamic. Many of these compo-

nents canbe analyzed with various simplifying assumptions; however, in
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many cases, the more efficient procedure would be to test the design
concepts after a preliminary analysis has been performed rather than
conduct a detailed analysis. This is particularly true if the design
criteria for a particular component is deflection or permanent defor-
mation. The need for tests of a specific component will depend on how
critical the weight of component is, i.e., if a large margin of safety

is acceptable. In other cases, the physical size or cost of a component
could be critical.

The objective of these tests will be to determine the margins of safety

for design concepts under combined and sequential loadings. Degrada-
tion of a joint or attachment due to preceding environmental conditions

will be determined. Stiffness characteristics for use in both static and
dynamic analyses will be determined when necessary.

A detailed list of joints, fittings and attachments and loading conditions
cannot be formulated at this point in the preliminary design.

Static, oscillatory and shock loading will be applied to the components
while simulating the bending, direct and shear stresses as determined
from prior analysis. The temperature of the components will corres-
pond to the predicted operating temperatures when it has a critical in-
fluence on performance of the component.

4 Heat Shield Ablator

2.3.4.1 Design Information Acquisition for Sterilization Phase

The function of the ablator material is primarily to provide thermal
protection for the structure and internal components of the flight capsule.
The ablator contributes negligible strength to the primary capsule struc-
ture and is generally neglected in analysis of the static structural res-
ponse to external loading. The principal structural requirement for the
ablative material is merely to be compatible with its supporting structure
throughout the mission profile unit entry shell ejection.

The ability of the ablator to be compatible with a specific substructure
is reflected in its relative thermal strain and stiffness properties as
compared to the substructure material and its ductility or strain to
failure. The compatibility has to be considered over the expected oper-
ating temerature range, but primarily at the lowest expected tempera-
ture.

The above mentioned mechanical properties which are required in the

design calculations, can be altered by the sterilization heat cycle, a
result of possible additional curing of the material. This post curing
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could also affect the dimensional stability of the ablative material caus- .
ing either permanent expansion or shrinkage of the material. These

changes in dimension could induce residual compressive or tensile

stresses in the composite heat shield structure.

The mechanical properties of the ablative material will be measured
after exposure to the simulated sterilization heat cycle to provide data
for the design analysis. The principal structural properties which will
be measured will be the stress strain relationships, thermal strain,
and ultimate tensile stress and strain as a function of temperature.

The samples will be exposed to the sterilization heat cycle and measure-
ment made of mechanical properties.

2.3.4.2 Design Information Acquisition for Spaceflight and Entry Phases

During spaceflight, if the ablator is exposed to the deep-space vacuum,
the mechanical properties can be altered by outgassing of some of the
volatile constituents. Combined with the exposure to vacuum is the
possibility of thermal cycling inducing a low-cycle fatique-type of failure.
The thermal cycling is induced by periodic exposure to solar radiation.

The mechanical properties of the ablative material will be measured
after prolonged exposure to the simulated space environment to provide
data for design analysis.

The duration of the prolonged vacuum exposure will depend on the ex-
pected mission profile. Methods of accelerated vacuum exposure such
as the use of elevated temperatures will be utilized when feasible. Tests
will be performed on ablator specimens alone and composite ablator
structure specimens. The test will be conducted at 10-5 torr or less.

Measurements of mechanical properties should also be made.

5 Internal Structure

2.3.5.1 Design Information Acquisition for Ground Handling, Launch,
Entry and Parachute Deployment

Stiffness characteristics are required for static and dynamic analysis

of the internal structure when subjected to the ground handling, launch,
entry and parachute opening loads. These quantities can be predicted
analytically for preliminary analysis subject to simplifying assumptions.
For final design, it is necessary to know the value of these quantities
with greater accuracy as well as measurements of damping of the struc-
tural system, a quantity which is very difficult to predict analytically.
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Measurements of static influence coefficients of the internal structure
will be made to provide data for the static and dynamic design analysis.
Natural frequencies of system components will also be measured to be
used in developing equivalent dynamic models for use in the dynamic
analysis.

Static force deflection measurements will be made at critical locations
determined by analysis, to be used as structural influence coefficients.
Sinusoidal frequency sweeps will be made of principal components to
determine natural frequencies for use in developing equivalent dynamic -
models.

The number of measurements required for each mission phase will de-
pend on the significance of the change in the structural configuration in
each subsequent mission phase.

2.3.5.2 Performance Prediction for Ground Handling, Launch,
Parachute Deployment

The internal structure is a complex redundant structure composed of
frames, trusses, shear webs and shells. The response of the system
to static loads can be conservatively predicted using computerized
analytical methods and experimental data obtained from tests described
in paragraph 2.3.5.1. The need for verification of the results of the
analysis depends on the degree of conservatism permissible in the com-
pleted design. The permissible conservatism is reflected primarily in
the allowable weight. If weight is a critical problem’in one of the mission
phases, it will be necessary to simulate the loading during that phase
on the structural assembly to verify the design calculations. At this
point in the design cycle, it is not possible to state with certainty the
need for a specific test to verify a static performance prediction.

The state of the art in dynamic analysis is not as far advanced as static
analysis, hence a confirmation of performance prediction is necessary
for the ground handling, launch, entry and parachute deployment mission
phases.

The static performance prediction will be verified by applying equivalent
forces, moments, reaction and restraints as determined by analysis.
These loadings will be applied in sequence if necessary.

The dynamic performance prediction will be verified for the ground
handling, launch and entry mission phases by comparing the results of
sinusoidal and random vibration inputs to analytical predictions using
the design dynamic model.

'fhe parachute dynamic loads performance prediction will be verified by

equivalent shock loading obtained from drop test or other suitable methods.
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2.4 THERMAL CONTROL

2.4.1 Reference Design Performance and Technology Development
Requirements

The thermal control system function is to maintain the temperature levels
of the various components of the flight capsule within prescribed limits.

A secondary objective is to provide pre-entry temperature levels for the entry
shell to minimize their weight while maintaining their thermo-structural
compatibility, Finally, the temperature control system should minimize
flight spacecraft temperature excursions after separation as well as mini-
mizing spacecraft power requirements before separation.

The thermal control is basically a passive system augmented by heating
elements placed at required locations. It is incorporated by applying coat-
ings and utilizing the existing structural members for heat flow management
and heat leakage control; local insulation may also be required. The ther-
mal control development problems and technical requirements for either

the entry shell or canister subsystems are. similar (low emissivity coatings
are required for both); however, the canister subsystem is simpler since
the coating would be applied to a metallic substrate, For the entry vehicle
shell the substrate is organic and presents outgassing, potential low tem-
perature (below transition phases), and decontamination/sterilization pro-
blems. Thus,even though discussed for the entry vehicle shell only, the dis-
cussion is also applicable to the sterilization canister. The thermal con-
trol system consists of the coatings, insulation materials, and heaters.

The radiative heat interchange between the internal surfaces is controlled
by proper surface conditioning, and convective heat transfer is usually
negligible although it may depend on the prevailing g - level and the degree
of internal pressurization.

Since the flight capsule is primarily in the shade of the spacecraft, a low
emissivity (¢ = 0.05 - 0. 1) coating is essential, The operating temperature
limits of the components appear to be quite compatible with the lower tem-
perature heat shield limit (approximately -100° F).

Of importance are their optical and adhesion characteristics when applied

to the substrate (the composite of coating and heat shield) and exposed to

the environments. This in turn will require effort in the application methods
development (bonding and surface preparation) to assure adhesion and pro-
per coating thickness selection, and determination of the properties of the
composite that are required to assure the performance. The effect of ETO
decontamination and dry-heat sterilization cycles and the effect of low tem-
perature and vacuum during cruise and orbit near Mars on the coating com-
posite performance will have to be determined.
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Bevans, (Reference 1) with a Gier-Dunkle infrared reflectometer to- ‘
gether with a Perkin-Elmer Model 98 monochromator and associated
control and recording equipment.

3. Thermal Cycling Tests in Ultra-High Vacuum -- The purpose
of these tests is to evaluate the coating adhesion/flexibility of the sub-
strate-coating composite during thermal cycling in an ultra-high vacu-
um. Two types of tests are to be performed. One test consists of
cycling the composite sample between the hot-soak and cold-soak tem-
perature limits. The other test consists of exposing the composite to
an incident solar flux level cyclically. Both tests are described below:

a. Temperature Cycling Tests -~ The purpose of the test
program is to evaluate the effects of hot and cold cycling at high alti-
tudes on thermal control surface coatings. The evaluation should de-
termine the stability and adequacy of the surface coating to withstand
temperature cycling within specific limits and at high vacuum 1 x 10-6
torr).

Cold-and hot-soak panel tests have been employed extensively in the
past to evaluate design suitability at the lower and upper limits of the
thermal protection system temperature envelope. The thermal con-
trol system performance and the effect of bond, basic ablator, and
joints on the coating performance represent the major areas of investi-
gation.

The specimens ( 10 x 10 sample size) are mounted in holders so that
the face (coated surface) is a quarter of an inch from the heat transfer
surface. The chamber will be pumped down to a pressure of 1 x 10-6
torr using liquid nitrogen in the cryopanels.

The test samples will then be subjected to the various optical and phy-
sical tests to characterize the coated surface before and after each test.

b. Solar Flux Cycling Tests -- The tests of the coating effec~
tiveness should be performed in a space-simulation chamber equipped
with a solar simulator such as the Avco 200 liter Space Simulation
Chamber.

A 5-kw high-pressure Xenon lamp is used as a solar radiation simula-
tor. It has been found that in practice it is necessary to supplement

the ultraviolet radiation of the high-pressure Xenon lamp to obtain a
satisfactory intensity in this region of the zero-air mass solar spectrum.
High-pressure mercury lamps (type GE AH-6) are used for this purpose
and one is mounted in a parabolic reflector just to the side of the main
Xenon lamp.

R. V. Dunkle, and J. T., Bevans, Measurement of Absolute Spectral Reflectivity from 1.0 to 15 Microns, J.
4 No. 7 pp 558-562 (July 1954).
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4, Measurement of Mechanical and other Physical Properties --
The mechanical and other physical properties of the coatings will be
studied as discussed below:

a. Bond Strength -~ Both shear and tensile bond strengths of
the coating to the substructure will be evaluated before and after ex-
posure to simulated environments. Test specimens will consist of the
coated substrate material bonded at the coating surface with a high
strength adhesive to a steel plate. Proper specimen design and testing
in a universal test machine will generate either shear or tensile loads
at the coating-substrate bond line. Tests will be conducted at the vari-
ous tests speeds and temperatures of greatest interest.

b. Flexibility -- The coated substructure material will be
tested on a universal test machine to determine the elongation behavior
of the coating under conditions of varying test speeds and temperatures.
These tests will be carried out before and after environmental exposure.

c. Fatigue Resistance -- The fatigue resistance of the sup-
ported coating will be tested in bending at low and moderate frequencies
to simulate ground and launch vibration. Test conditions will be de=~
termined by the specific environments. Specimens will be instrumented
so that either cracks in the coating or loss of bond will signal the end
of the test, whichever is determined to be critical,

d, Abrasion Resistance -- Since surface roughness can ef-
fect the optical properties of many coatings, the abrasion resistance
of the coating will be evaluated. The test will be similar to the Tabor
test, where a wheel of specific roughness abrades the coating at a spe-
cific speed, and resulting surface roughness and weight loss are meas-
ured. Optical properties will be measured before and after abrasion,

e, Permeability -- The permeability of the supported or un-
supported coatings will be measured by simple gas-flow tests. The
pressure drop across the specimen will be measured at specific applied
pressures. The sprayed coatings can be tested directly on the substrate
material if the permeability of the substrate is known, Sheet coatings
can be tested either free or as applied to the substrate.

f. Density and Porosity -- The bulk density of the coating
in either the supported or unsupported state will be measured by bulk
measurements of size and weight, or with the mercury porosimeter.
The coatings applied as sheets can be tested unsupported. Where bulk
measurements are impossible, the mercury porosimeter will be used.
The apparent density will be measured with a Beckman Air Comparison
Pycnometer. The difference between bulk and apparant densities is a
measure of the open porosity of the sample, With nonporous materials,
air pycnometer measurements will give bulk density data.
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g. Miscellaneous Testing -- The coated surface will be pho-
tomicrographed in life size, photomicrographed at the centroid of the
areas, and measured for both surface flatness and surface roughness,
X-rays will be made normal to the polished surface and parallel to the
lamination, and finally ultrasonic tests will be conducted to determine
the presence of voids and inclusions.

Other standard ground environmental tests will have to be conducted

to evaluate the effects of climatic environments on ablator surface
coatings. The evaluation of the ablator surface coatings shall, in gen-
eral, determine the stability and adequacy of the working surface coat-
ing to withstand exposure to salt spray, sand and dust, and temperature-
humidity environments per Federal Specifications.

2.4.3 Thermal Insulation Materials

Insulation may be required in areas where thermal control by limiting or
increasing of the heat leakage from external surfaces to the interior of the
flight capsule or between adjacent components is required. The pre-selec-
tion and specification of insulation materials, in particular, low-density
foam and complex-multi-layer superinsulation blankets, will require ther-
mal property measurements under actual environmental conditions as well
as tests to verify their mechanical behavior. Wherever possible, '"off-the-
shelf'" products will be used, thus not entailing a specific development ef-
fort. The problem is not considered critical in the sense that relatively
simple shapes, reasonably small temperature differences at moderately
low temperatures have to be maintained. However, design information
(properties) will have to be verified by tests in the environment, since the
insulation characteristics depend largely on the method of application and
may be affected by the sterilization - decontamination process. Procedures
and process controls must be developed to ensure reliable and reproducible
performance. The thermal model test will supply the needed verification

of performance prediction. The tests are summarized in Table XVII (for
screening of insulations for decontamination - sterilization) and Table XVIII,

2.4.4 Heating Elements

The design studies indicate that heaters are required in various elements
to provide additional thermal energy. The integration of heating elements
into a component, in general, should not create a critical problem. In the
case of the entry shell structure, however, the problem of assembly and
installation of the heaters may prove to be difficult.

The design data may be easily acquired, while the overall performance pre-
diction will have to be verified under various environmental conditions as
described in Table XIX utilizing full-size sections of the entry shell with
heaters imbedded. Their performance will also be verified in the thermal
model test,
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To maintain the sterile condition all entrances for viable microorganisms must be
sealed and lid separation must be accomplished in such a way as to preclude
vehicle recontamination. The critical items in technology development are the
determination of means to detect migration of viable organisms, the determina-
tion of the capabilities of these organisms to migrate against a positive pressure
gradient, and also the determination of methods to detect molecular leaks. These
methods must be suitable for manufacturing purposes and not just useable in a
laboratory. For instance, it will be difficult to locate a hole of the 0. 2-micron
size in a 184-inch diameter weldment. In addition, these leak detection methods
must be developed for determining canister leaks prior to completion of the
entire canister assembly.

Tests for the lid separation are mainly for sizing the charge and finding a method
of containing the explosion products and debris. The technology is known, but
the specific design is not. However, the method of measuring contamination by
viable organisms when this separation system is activated presents a major
problem and is discussed under recontamination in Section 3. 4.

3.3 PRESSURE CONTROL AND SEALING INTEGRITY

Originally the intent was to keep the canister sealed and pressurized during the
entire mission from the sterilization cycle to just prior to canister lid separation.
Due to the perturbations that could be induced to the planetary vehicle in case of

a leak developing in the canister, it has been decided to depressurize just after
the launch phase of the mission. Thus, the canister leak rate serves as an indi-
cation of the hole sizes available for microorganisms to pass through, rather than
for an indication of the supply of air required to keep the vehicle pressurized.
The pressurization subsystem for this flight capsule reference design consists

of the sealed canister, a fill valve, a relief valve, and a depressurization valve.
Pressure regulation from the sterilization cycle to installation of the flight capsule
on the flight spacecraft is done by ground handling equipment. The valves require
individual element tests that involve helium leak detection techniques to evaluate
sealing adequacy. These tests are straight-forward in nature and are not be-
lieved to present any unusual problems. However, to relate this leakage to hole
size at these pressures and to find and evaluate these holes in the seals and

welds requires development tests to determine a useable technique.

3.4 RECONTAMINATION

The sterilization system shall demonstrate, through an appropriate series of
tests, its capability to provide the required degree of protection against micro-
bial contamination.

Criteria and techniques must be established for evaluation of the performance of
the sterilization canister system, after which the test program resolves to a
determination of the maintenance of sterility, using various prototype and produc-
tion units that will be exposed to mission environments.
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The environments that are of primary concern are ground handling shocks, launch
pad mating and ascent flight. In these environments the possibility exists that
seals could momentarily open and allow passage of an organism, or that micro-
scopic structural failure at joints and fittings could foster contamination.

One test will be the confirmation of the effectiveness of the sterilization cycle.

The test article will consist of a full-flight capsule system consisting of parts,
components, assemblies, structure, and subsystems that are identical to flight
qualifiable equipment. The piece parts and subsystems shall be processed through
the defined sterilization procedures and assembled in accordance with the manu-
facturing plan.

In order to ensure that the internal microbial burden has been completely killed,
colonies of microbes, e.g., serratia marcescens, (S.M. )* would be established
in locations within the flight capsule near points that are thermally remote. These
colonies could be contained in closed capsules such that inadvertent capsule
contamination would not occur. As the simulation of mission operation sequences
is performed to demonstrate the adequacy of prototype hardware after exposure

to all simulated mission environments, the planted capsules could be recovered
and examined for effective kill provided by the sterilization system procedures.

The above test could be part of the thermal control tests; if not, the same canister
could be used in the next test. The entry vehicle would not be necessary. The
second test requires that the internal surface of the canister be assayed to assure
noncontamination. A nutrient is then spread on the interior and the canister is
sealed. The unit is then exposed to a sterilization cycle. After completion of the
sterilization cycle, the canister is exposed to appropriate bacteria. This ex-
posure is attained through the simulation of the vibration, shock and loading con-
ditions of handling and launch, and the temperature gradients of space cruise.

The unit is then thoroughly cleaned of exterior bacteria and assayed. The canister
is then opened and the interior checked for contamination.

Recontamination during cruise can be caused by the entrance of microorganisms
through the filter in the depressurization line. The effectiveness of this filter
and of a labyrinth at the exit of the line should be the subject of an element test
rather than a test with the canister assembly. The element test hardware would
consist of the valve, filter and exit line attached to a container and placed in a
vacuum chamber. With the vacuum pulled down to 10-6 1b/in. 2 or less, micro-
organisms are introduced to the chamber. A time limit will have to be deter-
mined consonant with the density of microbes in the test chamber in relation to
that assumed reaching the opening in space and matching the probability of en-
trance in these cases. At the completion of the exposure the test item would be
withdrawn, the valve closed, and the exterior of the unit sterilized and cleaned.
The container would then be opened and the inside cleaned with a sterile bacterial
broth. The bacteria count is then taken from this broth.

To check for recontamination during opening of the canister lid, the procedure
is as follows:

* Serratia marcescens is a form of aerobic bacteria, gram negative and non-spore forming which, when cultured, appeat as
visible colonies of a distinct red color, uncommon to other organisms likely to be found.

-64-




The sterilization canister's outside surfaces are painted with a powdered
suspension of lyophilized (freeze dried) S. M. The canister containing the
capsule is then placed in test chamber which has been examined for possible
contamination by S. M. In a like manner, the capsule surfaces and the

inner walls of the sterilization canister are assayed. If, by chance, S.M.

is found present, other indicator organisms such as Bacillus globigii or
Chromobacterim violaceum might be used. The test chamber is then pumped
down to produce a vacuum. The canister is jettisoned and the capsule re-
leased. The capsule is so oriented that it will fall into a plastic bag after

it is released. The bag is then sealed and removed from the test chamber.
The bag's external surfaces are then washed down with disinfectant to pre-
vent transfer or any S. M. to the capsule. The bag is carefully removed and
the capsule exposed. The surfaces of the capsule are swabbed in square areas
(6 by 6 inches approximately) and the swabs cultured in nutrient agar aero-
bically at room temperature for up to 72 hours. The absence of red colonies
on the agar plates will indicate that the capsule was not contaminated by
microorganisms from the surface of the sterilization canister.

3.5 CANISTER LID SEPARATION

The design for separation of the lid section of the canister consists of a mild
detonating fuse (MDF') encased in a plastic case to retain the explosive residue.
The detonation of the fuse expands the case against the canister shell forcing

it to shear on the outer metal ring. The expansion also forces the lid away from
the base.

The problems requiring development testing of the separation subsystem and
resulting from the environments are the high sterilization temperature, the low
temperatures during cruise through space, and the long exposure to high vacuum
conditions during the cruise phase. In particular, degradation has been experienc-
ed in tests of commercial grade RDX after exposure to temperatures near 300°F
for prolonged periods. Subsequent tests have proven most of this degradation can
be avoided by improvements in the manufacturing and inspection techniques

(tighter specifications). However, some degradation in the velocity of detonation
is still unaccounted for and additionaltesting is required to assure that the de-
gradation that occurs will not jeopardize the actuation of the separation system.

The cold temperature experienced during the cruise phase in space requires that
tesing of explosive components to be accomplished to determined the changes

in their actuation characteristics, and to determine the ability of the explosive
to survive without chemical separation or mechanical cracking.

The high vacuum condition will be experienced by the separation system after the
launch phase. The problems of high vacuum in relation to the separation sub-
system will be the outgassing of explosive constituents and the possible cold
welding of adjacent surfaces.
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Other problems to be solved in the separation system development are to prevent
hangup and/or excessive tipoff of separating parts. The canister separation sub-
system has a separation plane oriented normal to the flight-axis direction. In
separation systems of this type, the structures inherently provide substantial
circumferential stiffening. The separated sections therefore have substantial
hoop stiffness as contrasted with separation systems such as clamp-shell type
shrouds that separate in longitudinal planes. For this reason dynamic flexure

of the separated sections is of quite small amplitude and should not cause inter-
ference and collision between separated sections. The problem of hangup is,
instead, primarily dependent upon the detonation of all MDF.

Tipoff can be induced by circumferential variations in elastic energy release

due to nonuniform preload in mechanical multi-point tiedowns. In MDF -type
joints tipoff is due to circumferential variation in explosive detonation velocity,
core loading, and structural deformation caused by explosive forces. The logical
development program is one that attempts to prevent the problems by extensive
use of small sample tests. Comprehensive testing of representative sections of
the preliminary design provides detailed guidance for design revision; involves
the use of relatively inexpensive test samples; and allows acquisition of reliability
information at an early stage in the program.

Table XXII presents the development tests that would be performed on components
of this separation subsystem. The general purpose of the tests indicated is to
evaluate the characteristics of the design, establish the performance of the ex-
plosive elements after exposure to degrading environments, and provide the nec-
essary guidlines to evolve the preliminary design into a workable system.

Development and demonstration testing of the system will utilize a ballistic
pendulum. Early development test samples would consist of a short cylindrical
section with a full-scale diameter and would represent, in essential details, the
preliminary design. The test sample would be mounted between two ballistic
bifilar pendulums that are weighted to represent the respective masses of the
spacecraft/capsule assembly and the lid section of the canister. Figure 2 shows the
schematic design of the setup. Through proper calibration and measurement of
pendulum displacements, and with equivalent mass moments of inertia of the
pendulum, calculations can be made for gross impulse and tipoff forces (horizon-
tal plane). The rotational and displacement measurements of the pendulums are
made from high-speed motion picture analysis, light beam/photo sensitive paper,
hot pen direct measurement or from break wires. This techniques has been
used extensively and successfully in spite of the lack of 6-degrees of freedom.

The lack of complete freedom in a zero-~g field can be compensated in the ballistic
pendulum technique by constructing and orienting the test specimen to have the
highest explosive energy gradient (or other impulse producing source) in the
horizontal plane. Thus with the explosive core load distribution as shown in
Figure 2, the maximum tipoff forces are determined.
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The accuracy of impulse measurement and tipoff determination is a function of the
length of the ballistic pendulum suspension lines. Environmental chambers do not
generally allow use of long suspension lines (order of 25 feet). Tests are usually
run in a normal atmospheric environment using long suspension lines to establish
impulse and tipoff, and then confirmatory tests (with shorter lines) are run in
vacuum environments to demonstrate performance of explosive trains, measure
gas-shock pressures, and examine particle backblast containment. (Large
chambers are available - Langley 55-foot - but the extensive testing required
may cause schedule problems. )

The backblagt containment in early development hardware is determined by use
of carbon blacked or painted witness plates positioned inside the test sample in
proximity to the separation joint. Examination of the plates, after test, locates
areas of design deficiency (usually around detonators) and, from penetration
measurements, allows judgement of the severity of particle backblast. This
same technique, but with witness plates externally placed, shows particle dis-
persion caused by the exploding MDF and allows evaluation of the possible impact
on other parts of the system.

Bikini gages, (plastic membranes of different diameter calibrated to break at
various pressures) are also used to evaluate performance.

Demonstration tests of the fully developed sterilization canister would be perform-
ed using the same test techniques but would utilize full structures representa-

tive of the final design (prototype and flight acceptable). In addition, a full
operating flight capsule would be used in at least one test to demonstrate particle
backblast effects on thermal control coating, structural stress wave-shock and
gas-shock effects on electronics {(relays are of particular concern), and con-
firmatory measurement of gross impulse. These full-scale separation tests
would be performed in conjunction with or as part of the tests recommended in
Section 3. 4.
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4,0 SEPARATION SUBSYSTEMS

4,1 FLIGHT SPACECRAFT - ENTRY VEHICLE SEPARATION SUBSYSTEM

4,1.1 Reference Design Performance Requirements

The entry vehicle shall be separated from the flight spacecraft (at the forward
ring of the flight capsule adapter section) by a V-type clamp-ring. This
clamp-ring shall be released, upon signal, by the actuation of any one of

four explosive nuts. The separating force is provided by 10 compression
springs, two of which are used to overcome the friction of the two electrical
connectors; while eight provide the impulse to obtain the separating velocity.
The requirements of the system are as follows:

1. A minimum separation velocity of 1. 5 ft/sec.
2. A clean separation with all parts retained on the adapter if possible
and no debris ejected that might degrade the operation of entry

vehicle or flight spacecraft equipment.

3. Isolation of shock due to explosive actuators so as not to damage
electronic equipment.

4. Relative tipoff rates of less than 3 deg/sec to avoid interference
between vehicles as the entry vehicle is ejected.

5. Minimum perturbation to the spacecraft so as not to disturb Sun-
Canopus orientation.

4.1.2 Technology Development Requirements

The separation subsystem used for separating the entry vehicle from the
spacecraft is a standard design used in many other types of equipment;
however, the environments in which it functions are generally more severe
than previously encountered. The problems associated with the environments
are the temperature range, from 275°F (135°C) during the sterilization
cycles to approximately - 100°F during planetary transfer. and the storage
in high vacuum during this transfer. The temperature range presents a
problem mainly to the explosives where degradation in the detonation rate
has been experienced in commercial grade explosives exposed to tempera-
tures in the sterilization range. Preliminary tests indicate that more
stringent specifications, especially in the area of impurities, will solve

this problem. Some devices have already been exposed to these tempera-
ture extremes and have been actuated. If hermetically sealed cartridges
are used to avoid the vacuum problem, the tests required would be explosive
charge sizing tests and environmental tests to check the integrity of the
design.
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The space vacuum (estimated at around 10716 torr) presents a problem to
parts of the separation assembly that are required to move relative to each
other. As stated, the explosives, if hermetically sealed within their own
containers, will probably not be affected; however, the V-type clamp pre-
sents a large surface contact area that must not bond to the rings being
clamped. The vacuum conditions, by removing the surface films from the
adjacent parts, increases the probability of this bonding action taking place.
One solution is to coat the surfaces with a very slow-to-outgas material
that doesn't have the strength to bond the adjacent parts together (such as
silicone grease) or with Teflon. The system tests of prime concern, are
to confirm the design by testing the performance of the assembly to assure
it meets the requirements of section 4. 1. 1.

4.1.3 Explosive Nut with Bolt Ejection

4.1.3.1 Test Objectives and Description

The objective of this test is to check the function of the explosive nut
including retention of explosive products and to evaluate degradation due
to sterilization and space storage temperatures.

4.1.3.2 Test Facilities and Equipment

The following facilities are needed:

1. Oven -- To heat test sample to 300°F,

2, Vacuum Chamber -- To produce 10-6 1b/in. 2 pressures
and -100°F temperature.

3. High Speed Cameras -- With greater than 4000 frames/sec
to observe actuation.

4. Accelerometers, Strain Gages, Pressure Gages and Recording
Equipment -- to measure effects of explosion.

4.1.3.3 Test Conditions

Since this test is to determine performance degradation of the explosives,
samples must be tested at room temperature and compared with samples
subjected to the mission environments and then tested. These environ -
ments are:

1. Sterilization Heat Cycle -- in accordance with JPL specifica-
tion Vol-50503-ETS,

2. Launch Vibration -- Inputs to agree with this report Volume I,
Book 2, Section 4. 3.
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3. Minimum Temperature -- -100°F

4.1. 4 Entry Vehicle Subsystem Separation

4.1.4.1 Test Objectives and Description

The test techniques for development and demonstration testing of this
subsystem will be performed in a manner analogous to the test of the
sterilization canister lid separation (Section 3. 5).

Initial testing will utilize full-diameter circular sections suspended
from ballistic pendula and final demonstration tests will utilize fully
representative hardware.

There are two essential differences to be observed between the applica-
tion of this test technique to the canister lid separation and the entry
vehicle separation. The first difference is that the structural shock load
for release of clamps and bolts will probably be less than the shock
loads from the MDF separation and gas-wave shock and debris will not
be present. Therefore, it is not as necessary to have tests to evaluate
shock effects of this system on the electronic packages.

The second difference deals with the problem of misalignment between
the separating pendula which can cause binding of spring guides or inter-
meshing parts in the area of the separation planes. This problem can
be countered by adjusting the pendulum masses such that their displace-
ment with time from the initial position is the same (equal initial velo-
city) with the result that no misalignment will occur. Also, the length
of suspension lines must be sufficient to allow the separating impulse

to cause complete extension of separating springs and full extraction

of intermeshing parts. With these differences noted, the test technique
is equally applicable to the entry vehicle tests.

4.1.4.2 Special Test Facilities and Equipment

This test will utilize the same equipment as required for the steriliza-
tion canister lid separation test described in section 3.5.

4.1.4.3 Test Conditions
Ambient test conditions should be used.
4.2 ENTRY SHELL - SUSPENDED CAPSULE SEPARATION SUBSYSTEM

4.2.1 Reference Design Performance Requirements

The entry shell shall be disconnected from the suspended capsule by a V-
type clamp ring. This clamp ring shall be released, upon signal, by the
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actuation of any one of four explosive nuts. The separating force is provided
by the drag of the deployed parachute system and the separation of the two
structures separates the electrical umbilical. The requirements of the sys-
tem are as follows:

1. A clean separation with all parts retained on the entry shell and no
debris ejected that might degrade the operation of the suspended capsule

equipment.

2. 1Isolation of shock due to explosive actuator so as not to damage
electronic eguipment.

3. The entry shell must not bump the suspended capsule during separa-
tion.

4.2.2 Technology Development Requirements

The technology development requirements are the same as those required
under the flight spacecraft-entry vehicle separation subsystem (Section 4. 1.2)
except that tests to confirm the performance of the assembly require re-
lease of the entry shell under simulated worst-case parachute loading condi-
tions, and pendulum tests are not required.

4.2.3 Explosive Nut with Bolt Ejection

To be done under 4. 1. 3.

4.2.4 Entry Shell Subsystem Separation

4.2.4.1 Test Objectives and Description

Entry shell - The separation of the entry shell (heat shield and struc-
ture) from the suspended capsule will occur in the supersonic regime
of entry flight. The vehicle will be at near-zero angle of attack. The
main parachute system will be deployed at these flight conditions to
further decelerate the flight capsule.

At some time shortly after peak parachute loading, the separation sys-
tem will release the entry shell. The difference between ballistic
coefficients of the shell and parachute/suspended capsule configuration
will cause the shell to fall away from the payload.

To assure the clamp ring will not cause a temporary hangup condition
that will in turn cause bumping between the entry shell and the suspended
assembly, a test should be run with the vehicle in a vertical nose-down
position and hung at a height above the floor. If future aerodynamic
studies show a spin is induced on entry, an initial spin could be added
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to the test vehicle. Release actuation characteristics would be deter- ‘
mined by linear extensiometers and recorders and by high speed motion
picture coverage of the test setup as the clamp ring is released.

Another test will be run simulating the dynamic conditions of the separa-
tion. These conditions will be obtained by dropping a simulated entry
vehicle from a tower to achieve the required initial loading. A restrain-
ing cable connected to the parachute swivel will simulate the parachute
drag load after extension of the cable. The force history of the parachute
drag will be approximated by use of a series of springs and dash pots

to restrain the drop cable. Data acquisition will be by means of high-
speed cameras, accelerometers, and recording equipment.

4,2.4.2 Special Test Facilities and Equipment

1. High Speed Cameras -- 1000 frames/sec.

2. Recording Equipment

3. Accelerometers -- To measure 20-g parachute load and show
bumping conditions.

4, Tower -- in excess of 100 feet

4,2.4,3 Test Conditions

1. Environment -- Still air.

2. Loading -- 20 g

3. Angle of Loading -- Variable.

T4




5.0 PARACHUTE SUBSYSTEM

5.1 REFERENCE DESIGN PERFORMANCE REQUIREMENTS

The two major items to be investigated via ground testing are (1) The flow field
behind the blunted cone throughout the Mach number range of interest, and (2)
the performance characteristics of the parachute itself including aerodynamic
coefficients, inflation, stability and shock-load attenuation.

Other ground testing, including initiation devices and/or circuitry and deployment
mechanisms is standard and will not be discussed herein. Note that all of the
test components must be put through the sterilization criterion before commence-
ment of testing.

5.2 BLUNT-BODY WIND-TUNNEL TESTS

Flow-field characteristics behind the blunted cone are required and can be ac-
complished in the wind tunnel. Results from Mach 0.1 to 1.2 are required
across the entire traverse of the tunnel so that, q/qstag' and P/Pstag can be
measured at varying distances behind the forebody stagnation point. The results
of these tests, will indicate whether or not inflation of the chute is choked due to
the blunt-body flow-field effects.

5.3 PARACHUTE WIND-TUNNEL TESTS

The performance characteristics of the parachute, both at deployment and during
its subsonic descent, can be established via wind-tunnel testing. The parameters
to be established are (a) drag coefficient, (b) stability (aero coefficients), (c)
opening shock-load attenuation, {d) inflation, (e) canopy porosity effects and (f)
blunt-body wake effects. Wind-tunnel instrumentation to evaluate the above
parameters is standard in nature and will not be discussed here. Note that the
results of the test conducted will be limited by scaling uncertainties.
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6.0 PROPULSION SUBSYSTEM

6.1 REFERENCE DESIGN PERFORMANCE REQUIREMENT

The separated vehicle requires a AV capability of 1400 ft/sec with a single
firing cycle. In addition only subsystems that would have their state-of-the-art
established by September 1966 should be considered for use in the flight capsule
design. The other requirements were: sterilizability, reliability, space
storageability, total impulse accuracy and 101, 600 lb-sec total impulse.

6.2 TECHNOLOGY DEVELOPMENT REQUIREMENTS

The requirement that the rocket motor must meet its operational performance
after being subjected to sterilization and long term space storage imposes a
condition to which space motors under development had not been previously
subjected. Sufficient testing has been accomplished, however, to indicate that
new technology is not required.

6.3 STERILIZABLE PROPELLANTS

Sterilizable propellant development has been underway for over two years by
Thiokol Chemical Corporation. The development effort during the period has
been with TP-H-3105 propellant, and this is the propellant being used in the

reference propulsion system. The most recent work is a program Thiokol ./
has under contract with JPL for a "Design Study of Heat Sterilizable Solid

Rocket Motors.'" Test results to date indicate that TP-H-3105 propellant is

able to meet the sterilization requirements without degradation in motor per-

formance.

The details (rather than the basic nature) of the sterilization requirements and
procedures are changing continuously and probably will continue to do so over
the next two years. Therefore, it is the considered opinion of those concerned
with this area of development that TP-H-3105 is a satisfactory propellant and
that no extensive development program is required to obtain a sterilizable pro-
pellant. Development efforts similar to those underway will continue primarily
to evaluate the limits of the propellant under various environments rather than
to determine basic design information.

The propellant development portion of this rocket motor development will

follow the approach used for an existing propellant, but being tailored to a
specific motor design. In addition to the ster%liza.tion environment the motor
will be exposed to a space environment of 10 = Torr for up to one year necessi-
tating some propellant space aging tests. Some work has been done with similar
propellants and the results have indicated that no critical problems will be en-
countered, but, because the time period for this application is longer than those
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previously planned, more testing over a longer period will be conducted. The
testing referred to was with a complete Surveyer ignition system, consisting
of the safing and arming device, squib and the pyrogen. The units were put
under vacuum of 10-5 to 10-6 torr and cycled several times between 0° and
100°F. The units operated satisfactorily; the performance was statistically
indistinguishable from tests at sea level. This same basic ignition system
design concept is used for the reference propulsion system.

In a very extensive space aging program, Thiokol investigated the space
storability of several propellants at -65°F, and175°F, at both atmospheric
pressure and under a vacuum of 107©to 10™ ' torr, for time periods of up to
eight weeks. One of the propellants, TP-H-1050, is of the same basic pro-
pellant family as TP-H-3105. After eight weeks under high vacuum at ambient
temperature the modulus had increased somewhat, as had the burning rate,
the ease of ignition and impact sensitivity. These changes were not considered
serious; however, considerable reduction in their magnitude was found possible
by modifying the polymer from which the propellant was made.

6.4 MOTOR DEVELOPMENT

The motor development program required would follow the same approach

as is used to develop similar rocket motors for space applications. Because

of the sterilization requirement, additional tests would be required to verify,
that there are no degradation effects due to the sterilization procedures and
environments. The development program would also have a phase to determine
and evaluate special manufacturing and assembly techniques because of the
sterilization requirement.

The one area where there is little preliminary data on the effects of sterilization
environments is ignitors. The ignitors use the same propellant as the motor,
so that no difficulty is anticipated with the ignitor propellant. The safing and
arming and squibs have not been exposed to heat sterilization environments and
are considered an unknown. Some work has been done to determine the squib
designs that .are compatible with the sterilization environment with favorable
results. No work to date has been done to determine the RFI limits of steril-
izable squibs. It is felt that state-of-the-art development is not involved.

The development program will be followed by a design verification and a type
approval test program. Again, this would follow the presently established
programs with the exception that sterilization and space aging impose additional
tests.
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6.5 ASSEMBLY AND HANDLING

There will be two groups of materials flowing into the propellant manufacturing
and motor assembly area. The first group consists of the non-sterile raw
materials and components which must be thermally sterilized, and the second
group consists of the sterile and sterilely packaged raw materials and com-
ponents for which only surface sterilization is required. Since the propellant
is to be manufactured and the motor is to be assembled under clean room
constraints, the thermal sterilization or the ethylene oxide/freon surface
sterilization must be accomplished, as applicable, on each of the raw materials
and components before it enters the clean processing and assembly area. The
clean-room facilities will be for mixing, casting, finishing and assembly
operations. The clean room will adhere to the specification of '"Class 100, 000"
of Federal Standard 209, which is the equivalent of the Air Force '""Standard
Clean Room (Operational)''. The clean room itself will be divided into several
modules for safety reasons. Modules will be for:

a. Shipping and receiving

b. Assembly of motor case and of casting hardware before casting

c. Mixing, deaeration, and casting of the propellant

d. Cutback and finishing of the cured grain

e. Final motor assembly after cure, i.e., addition of ignition system.

While the function of all modules is self-evident the shipping and receiving
module requires some additional explanation. This module would have separate
access (for materials only) to an uncontrolled area outside, in addition to
normal, unrestricted intercommunication with the other clean room modules.
Communication between the shipping and receiving module and the uncontrolled
area will be through three interchanges: (1) an oven with the door opening into
the clean area and one into the uncontrolled area, (2) an ethylene oxide/freon
decontamination chamber, likewise with the two doors as above, and (3) a

clean interchange, again with two doors,.

The flow of all materials into the clean room is through this shipping receiving
module. Items requiring thermal sterilization, ammonium perchlorate, etc.,
will be placed in the oven from the uncontrolled side, thermally sterilized and
removed from the clean side. Items requiring chemical sterilization, polymer
drums motor cases, etc., similarly will pass through the ethylene oxide de-
contamination chamber. All items placed in the oven or the decontamination
interchange from the uncontrolled area will be normally clean.
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Likewise, items to be shipped out of the clean room will go through the clean
interchange of this module. This finished motor will be sterilely packaged
before entering the interchange.

Within the clean room, the usual propellant manufacturing processes will be
employved. The motor will be assembled and the propellant deaerated and cast.
For curing, the motor will be packaged in a sterile envelope and removed from
the clean area to the regular curing ovens. After cure it will be returned to

the clean room for cutback and finishing. At this time the ignition system will
also be added. The final steps in the motor production task will be the sterile
packaging and sealing of the motor so that it can be removed from the clean area

for crating in preparation for shipment.

The handling procedures for the motor after it has been packaged for shipment
will be similar to those now established for existing motors in this size class.
The procedures will be modified to be compatable with the established steril-
ization requirements and procedures. At the time the motor is ready for
shipment, the motor manufacturer will issue a document to cover the handling,
checkout, and installation procedures to be followed in the field.
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7.0 ATTITUDE CONTROL SUBSYSTEM

7.1 REFERENCE DESIGN PERFORMANCE REQUIREMENTS

7.1.1 Inertial Reference Subsystem (IRS)

The inertial reference system consists of a four gimbal inertial platform,
a digital computer and a three-axis sensor system for rate limiting. The
four gimbals on the platform are required to permit full flexibility and
angular freedom. The platform also contains the accelerometers for data
purposes, thus providing inertially referenced acceleration data. The
digital computer provides the means of transforming the platform gimbal
angles into the proper reference frame for commanding the vehicle reaction
control system. The computer will accept angular commands from the
CC & S and provide the logic to control the reaction control valves. The
computer will perform the proper transformations from the IRS gimbal
angles to command the TV camera gimbals along the local vertical. The
computer has the ability to provide an integration of the accelerometer
data for providing velocity information if desired.

Control Logic

The control "deadband' shall be + 0.5 degree from the nominal
commanded angle for the yaw and pitch axis and £ 1.0 degree for the
roll axis with a hysteresis factor of 10 percent.

Error Sources

Error contributions (1 sigma) in the computation and control of the
angles are:

G-Insensitive Gyro Drift 0.4 deg/br
G-Sensitive Gyro Drift 0.3 deg/hr/G
Gimbal Readout Error 0.1 degree
Computation Error 0.1 degree
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7.1.2 Cold-Gas Reaction Control Subsystem

The reaction control subsystem proposed for the nullification of separa-
tion rates, orientation, roll control during de-orbit thrusting, reorientation
and limit cycling is basically a cold-gas system utilizing gaseous nitrogen
as the propellant. This cold-gas system consists of two identical sub-
systems each utilizing a central regulator, pres sure-vessel, vent and fill
manifold, squib valve, filters and solenoid valve nozzle assemblies. The
twelve solenoid valve nozzle packs provide the required three-axis control
in couples. This redundant system approach is utilized to provide the
necessary mission safety margin in the event of failure modes such as:

a. developing a gas leak in one of the subsystems, and
b. a valve failing to close.

In the case of one of the failures described, one nozzle of the couple will
be lost and the other nozzle will allow completion of the mission.

Thrust Levels per Axis

Yaw Two thrustors at 0.5 pound and = 1.0 pound
(1 pound at 7.33 feet = 7.33 ft-lbs.)

Pitch Two thrustors at 0.5 pound and = 1. 0 pound
(1 pound at 7. 33 feet = 7.33 ft-1lbs.)

Roll Two thrustors at 0.5 pound and = 1. 0 pound
(1 pound at 7.33 feet = 7.33 ft-1bs.)

Total Impulse

Required 75 lb-sec
Stored 248 1lb-sec

Response Parameters

Time Delay 0. 020 second

Time Constant 0. 005 second
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7.1.3 Hot-Gas TVC Subsystem

A hot-gas reaction subsystem is proposed for maintaining the desired
vehicle attitude during the de-orbit thrust application. This system 1is
composed of four identical solid propellant gas generator packs, each
consisting of a solid propellant gas generator, closely coupled to two
solenoid operated hot-gas valves and two reaction nozzles. These packs
are located on the vehicle as couples on both the pitch and yaw axis, to
realize an increase of mission safety margin in case of a generator or
valve failure.

Thrust Levels per Axis

Yaw Two thrustors at 25 pounds and 50 pounds
(50 pounds at 7.33 feet = 366.5 ft-1b.)

Pitch Two thrustors at 25 pounds and 50 pounds
(50 pounds at 7.33 feet = 366.5 ft-1bs)

Gas Generator Performance

Required 1225 1b-sec
Stored 3500 1lb-sec
Specific

Impulse 180 seconds
Burn Time 35 seconds

Response Parameters

Time Delay 0. 020 second
Time Constant 0. 005 second

Temperature Limits

Operation -100°F to 140°F
Storage -100°F to 140°F
Sterilization 300°F maximum
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7.

2

TECHNOLOGY DEVELOPMENT REQUIREMENTS

7.2.1 Inertial Reference Subsystem

The inertial reference subsystem design represents currently available
hardware designed for missile applications. The components are there-
fore capable of withstanding the normal missile launch environments.
However, the mission requirements for this program present several
factors that require investigation. These factors include the sterilization
cycle; the long vacuum soak; and the low-temperature soak,

The manufacturers of the IRS components and subsystems indicate that in
general, with, minor redesign, the currently available components will
be able to perform within acceptable limits despite the harsh operating
environments and sterilization cycle. Some of the components of the IRS
(gyros, electronic computers, etc.) have been successfully used on space
programs such as Ranger and Mariner. The general conclusion can be
drawn that only normal development will be required.

7.2.2 Cold-Gas System

The cold-gas reaction control concept has been used extensively for the
attitude control of ballistic missiles, satellites and interplanetary vehicles.
Numerous components of various sizes have been flight proven during
programs such as LORV, Mariner Ranger, RMV, OSO and OAO, to cite
a few. Component design for space flight-worthy equipment, such as
pressure vessels, regulators, and solenoid and squib valves, has become
a highly developed technology in the past few years. Further development
of these components is required only for the requirements imposed by
missions of a highly specialized nature; Sterilization is one such require-
ment.

Sterilization subjects the system component to elevated temperature,
(300°F) for a period of approximately 36 hours. Therefore, special design
techniques must be employed to maintain dimensional stability in the parts
for regulators and solenoid valves, since their performance is dependent

on close fitting sliding members. Furthermore, the parts must maintain
their dimensional stability when subjected to long periods in the space
environment (-100° to 140°E)

Squib initiators have been developed with functional capabilities between

temperature limits of -300°F and 450°F. Hence, squib compatibility with
the environments does not present significant problems.
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The design of the pressure vessels and line complexes is straight forward
and major problems are not anticipated.

System assembly and performance tests under ultra clean sterile
conditions necessitates the exercise of strict personnel and facilities
environmental control. Formulation of procedures will consist basically
of a modification of those presently established to ensure compatibility
with the requirements.

7.2.3 TVC Hot-Gas System Technology Status

The components of the TVC hot-gas system are representative of
state-of-the-art hardware employed in ballistic missile and manned
aircraft systems. Solid propellant gas generator technology is presently
based on proven design techniques successfully applied to such representa-
tive systems as SUBROC, POLARIS, MINUTEMAN, etc. The reference
design selected for the solenoid valve is the Minuteman hot-gas
roll-control system valve design. In addition to being a fully flight
qualified configuration, the subject valve incorporates configuration
features which are attractive for deep-space applications.

The major portion of the development program required for the TVC is
directed at insuring compatibility with the sterilization and long term
space mission environments.

Gas generator performance is readily predicted for the type of device
common to present weapon system designs. The advancement of design
technology demanded by the TVC gas generator implies determination of
propellant and ignitor performance characteristics exhibited during and
after exposure to environments of unusual severity. The subject
environments represent an extension of those presently encountered on
typical missile systems. Ability to meet the sterilization requirement of
36 hours at 300°F will require further testing. The autoignition test run
on current solid propellant attitude control rockets of 200°F for 6 hours
is an indication of the ability of existing designs to meet elevated tempera-
tur requirements. Furthermore, the need to operate in a -100°F thermal
environment should not present difficulty in view of test data accumulated
demonstrating -65°F as an acceptable temperature level for solid pro-
pellant rockets and jet engine starter cartridges.

Adequate performance data are available on the reference design solenoid
valve to verify the functional integrity of the device as a hot-gas valve.

The problems associated with utilization of the valve in an extended duration
space mission should not require configuration revisions of any magnitude.
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The lack of closely fitted precision parts and metallic surfaces in sliding

contact characterize a proven component as highly attractive for develop-
ment to withstand the extreme temperature range associated with the TVC
system.

7.3 INERTIAL REFERENCE SYSTEM DEVELOPMENT TEST PLAN

The IRS has three major assemblies: the inertial platform; the computer; and
the rate gyro assembly. Although each is a separate assembly, they have
common operating requirements, and a general development test plan is
applicable to all of these assemblies.

Each of the assemblies (platform, computer, and gyro package) will be tested on
the assembly level to validate the predicated performance and to ensure accept-
able performance during or after exposure to the applicable environmental con-
ditions. In the case of the platform, this will include verifying the drift (G,G2
and non-G sensitive) characteristics of the platform, its readout capability, and
dynamic response characteristics. The computer characteristics will be checked
by employing a checkout program for the computer that will exercise all of the
computer circuits. The computer program operating characteristics will be
determined by checking expected output against actual output. This technique is
employed in the checkout of large digital computers. The gyro package check
will verify gyro signal output as a function of input rate and the dynamic response
characteristics of the gyro package.

All of the assemblies will be checked before and after exposure to a normal
sterilization cycle. The tests will be the normal acceptance test procedures
for verifying performance to the applicable performance specifications. The
same testing will be required for exposure to the powered flight environments.
Since the system is not required to function during this phase, only '"before"
and "after" testing will be performed.

The testing of the assemblies while subjected to outer space environments,
(cold soak and vacuum) becomes more involved in that performance must be
verified while subjected to these conditions. The same acceptance test tech-
niques will be applicable with the stipulations that they be performed by remote
control. Another factor which must be considered is the time duration of these
tests. The normal exposure will be in excess of 6 months, and consideration
must be given to proving acceptable performance after long term exposure.
This will undoubtedly mean a special facility dedicated solely to long term
vacuum and temperature exposure investigations for all systems. However,
steady-state conditions can be met in far less time to prove short term effects
which will prove the majority of the design goals.

Aside from the individual assembly tests stated above, it will be necessary to
repeat the testing in an assembled subsystem configuration to provide proof
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of the subsystem compatability and performance for integration into the vehicle
system. The IRS does have an additional test requirement peculiar to this
system. Since the IRS must be active during the entry phase to provide
stabilization data after parachute deployment, it will be necessary to subject
the IRS to the expected entry angular dynamics to verify platform performance.
This will be performed on a three-axis servo-driven flight table by mounting
the IRS platform to the inner table gimbal and programming the table through
the expected entry angular rate time history.

The facility requirements for the IRS testing will include those required by
most systems (vacuum chambers,, temperature chambers, shake tables, etc.)
and several generally available minor facilities such as precision indexing
tables, autocollimators, isolation pads, and theodolites. The only major
facility requirement is a three-axis flight table.

7.4 COLD-GAS SYSTEM DEVELOPMENT TEST PLAN

The following test plan has been devised to outline the procedure used to
corroborate theoretical calculations of performance and structural integrity
and to insure system compatibility with the mission requirements. All com-
ponents will be subjected to the sterilization cycle and its effects will be
evaluated. Long term cold-soak tests (-150° F) will be used to evaluate
material structural behavior. The effectiveness of the sterilization itself will
be evaluated in another phase of the program. Assembly of components and
systems and in some cases tests, will be conducted in ultra clean rooms.

7.4.1 Pressure Vessel

Pressure vessel design calculations will be corroborated with laboratory
burst tests. Adjustments will be made to the burst test pressures to
account for the increase in vessel internal pressure and decrease in
material strength when the vessel is subjected to the elevated sterilization
temperatures. Areas of stress concentration and general stress levels

will be investigated with stress-coat and strain-gage techniques, respectively.

Environmental tests simulating space and Mars entry flight conditions will
be conducted to investigate stresses due to cyclic temperature changes
and vibrations and material structural integrity at low temperatures
(-140°F). Pressure vessel fill tests will be conducted to determine the
fill rates and cutoff pressures.
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7.4.2 Pressure Regulator

Bench tests will be conducted to establish a reference performance level.
These bench tests will investigate parameters such as response, repeat-
ability, resetability, resetability, errors, regulation, and leakage.
Components will be subjected to sterilization environments after which
performance bench tests will be conducted to determine the effects of the
sterilization temperatures and fluids. Compatibility of lubricants with
deep-space environments will be determined.

7.4.3 Nozzle Solenoid Valve

Tests will be formulated to determine the compatibility of this component
with the high temperature soak experienced during sterilization. Bench
tests will be conducted to determine valve response characteristics,
equivalent orifice size and leakage. These parameters will be checked
before and after valve sterilization. The nozzle solenoid valve assembly
will be evaluated for thrust transient response, steady-state accuracy and
repeatability.

7.4.4 Squib Valve

Tests will be devised and a test matrix formulated to establish the squib
valve fire reliability. A number of specimens will be environmentally
tested and fired for verification of electrical characteristics. Flow checks
will be made to evaluate the valve orifice size after firing.

7.4.5 System Development

Breadboard and prototype hardware will be fabricated to: a) check system
performance,b) establish pressure drops,c) establish build up procedures,
d) determine flow rates and tolerances, e) evolve cleaning procedures, and
f) establish compatibility with vehicle installation.

The system will be reviewed to assure compatibility with vehicle design
as related to the placement of fluid lines, tiedowns, joints, support
brackets, leak detection, and general access to the componentry.

The minimum total impulse validation test will be conducted on a breadboard

system. Pressure drop calculations will be verified for both the steady
flow and the nozzle cross-coupling condition.
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7.5 TVC SYSTEM DEVELOPMENT TEST PLAN

The following development tests are necessary to verify the theoretical design
techniques incorporated in prototype hardware.

7.5.1 Gas Generator

The purpose of testing the generator on the component level is to validate
predicted theoretical performance characteristics, demonstrate lack of
susceptibility to system environments. and to provide parametric informa-
tion required for successful total system integration.

7.5.1.1 Performance Tests

The operation of the generator will be verified for function time,
ouptut flow characteristics, ignition response, operating temperature,
erosion of the metering orifice, post-firing initiator characteristics,
working and ultimate stress levels in the housing, external skin
thermal gradients, mounting structure compliance, and deliverable
impulse. Performance testing will be used to establish a design
configuration. Included in these first tests will be checks of mass
parameters for verification of preliminary information provided for
vehicle design.

7.5.1.2 Sterilization Test

The objective of this test is to ensure that the sterilization process
does not impair generator performance and that the allowable microbe
count is achieved. The tests required for insurance of insensitivity

of performance to the process would reflect the standard ''before and
after" checks typically associated with an environmental exposure.
The initiator evaluation would include testing of electrical parameters
such as no-fire current, static discharge sensitivity, and bomb calo-
rimeter evaluation of caloric output and sure-fire characteristics.
Evaluation of total generator susceptibility would require repeating
those tests listed under performance tests which would indicate any
variation in the thermo-chemical properties of the propellant. Eval-
uation of conformance to the allowable microbe count level will neces -
sitate extensive dissection and examination of all generator elements.

7.5.1.3 Environmental Tests
The purpose of conducting environmental tests is to establish insensi-
tivity of the generator design to the conditions of booster powered

flight and prolonged space flight. As a ''one-shot" device, the gener-
ator test specimens will be tested according to a predetermined test
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7.

matrix. Firing each generator after a specific sequence of environ-
ments will yield performance data necessary to define the demonstrated
reliability of the item. Firing a generator will involve performance
monitoring as described under performance tests. The array of
environments will simulate the mission environments within the limi-
tations of test equipment and program schedule commitments. The
simulation of deep-space hard vacuum with radiation and temperature
extremes is representative of a condition wherein limitations of test
equipment may be a factor. The simulation of vacuum soak periods
of up to one year will undoubtedly be affected by program schedule
commitments. Test equipment required will be associated with simu-

lation of combined space vacuum, radiation, and temperature.

5.2 Solenoid Nozzle Valve

The objective in testing the solenoid nozzle valve on the component level

is to demonstrate compliance with design objectives with a simulated flow
provided by a laboratory facility hot-gas source. The verification of
insensitivity to mission environments and evaluation of actual performance
criteria is thereby achieved; valve design compatibility with the remainder
of the system is reserved for system tests.

7.5.2.1 Performance Tests

The purpose of performance tests is to measure compliance of the
hardware to theoretical design calculations. Testing will be conducted
with simulated gas generator flow provided by a laboratory hot-gas
supply supplemented with selective tests using cold gas. Parameters
to be evaluated would include: nozzle thrust (both in atmosphere and
in a hard vacuum), nozzle efficiency, thrust vector pointing accuracy,
mounting structure compliance, exterior skin temperature monitoring,
erosion of the nozzle throat section, evaluation of working and ultimate
stress levels, leakage rates of the closed position valve mode, elec-
trical power demand, transient response characteristics, measurement
of valve equivalent sharp edged orifice size, repeatability, and fre-
quency response performance. Test data will be used to corroborate
preliminary design estimates of dynamic and electrical performance
criteria utilized in the total TVC system synthesis.

Test equipment would include a laboratory hot-gas supply, hot-gas
flow stream instrumentation, and a thrust vector evaluation test stand.

7.5.2.2 Sterilization Tests

The solenoid valve requires evaluation for sterilization feasibility to
satisfy the identical objectives cited earlier for the gas generator.
Testing would concentrate on those areas likely to be susceptible to a
prolonged elevated temperature soak such as material properties,
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electrical and magnetic circuit parameters, and mechanical distortion.
Testing of conformance to the standard of sterilization would require
the same procedures under the gas generator.

7.5.2.3 Environmental Tests

The objective of environmental testing is to ensure compatibility of

the valve configuration with the mission environments. Performance
will be monitored before and after each simulated environment to
detect any design weaknesses. Representative features to be checked
would include distortion of parts due to thermal cycling and degradation
of the solenoid actuation force through faults introduced in the electro-
magnetic circuit.

7.5.3 Tubing Complex

The objective in testing the tubing complex is to verify theoretical design
calculations and to determine the actual performance characteristics
necessary in appraising the compatibility of the gas generator and solenoid
nozzle valves.

7.5.3.1 Performance Tests

Performance testing will concentrate on examining the structural
adequacy of the design and the variation of flow-stream properties
caused by tubing parameters. Preliminary tests employing a cold-gas
simulated generator flow will be complemented with use of a laboratory
hot-gas supply for subsequent tests. Testing will be used to evaluate
the following principal features: pressure drop, working and ultimate
stress levels, external skin temperatures, cooling of the flow stream,
thermal expansion. and suitability of the materials with the thermal
shock associated with introduction of a hot gas to a -100° F stabilized
tubing complex.

Evaluation of the cross coupling of solenoid valves operating with a
tubing complex and simulated gas generator flow provides performance
data essential to prediction of the actual TVC system dynamic operating
characteristics. The variation in opposed nozzle thrust values induced
by simulated mission duty cycles imposed on the valves will be de-
termined and employed to predict actual system performance.

7.5.4 TVC System Tests

Development testing of the TVC system is for the purpose of determining
compatibility of the system components in performing according to the
design objectives. An additional goal is to substantiate insensitivity to
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mission environments and to establish the desired confidence in the con-
ceptual integrity of the system necessary for final drawing release.
Performance tests will be composed of a series of measurements essen-
tially repeating tests run on a component level for each system element.
Evaluating all performance characteristics on a system level provides a
final validation of the design concept. Environmental tests will serve to
fill in the information gaps left from component tests such as the transmis-
sability levels associated with the total system assembly and mounting
hardware.
7.6 SYSTEM TESTING OF THE A
The assembly of all the subsystems of the ACS into a complete system will be
required to prove overall system performance and compatibility during and
after exposure to the applicable environments. These tests will be similar
to those performed on the components and assembly level, however not as
extensive since all of the components will have been tested individually.

The complete system assembly will provide a means of proving the dynamic
performance of the ACS. This will be accomplished by using a three-axis air-
bearing test facility. The complete system will be mounted and statically
balanced. The system will be activated and exercised in a manner similar

to that expected during a mission. That is, it will be commanded to perform
reorientation maneuvers, limit cycle performance and simulated thrust vector
control. The latter will be accomplished by providing disturbance torques to
the air-bearing test bed and measuring the ability of the hot-gas TVC system
to maintain proper orientation. The major difficulty of this type of testing is
the maintenance of static balance for extended periods and over large angular
excursions. However, if these limitations are recognized and either compen-
sentated for (automatic balancing) or accepted as test limitations, valuable
test data are available from this type of testing, and the dynamic response
characteristics of the overall system can be verified. A precision air-bearing
table is required for these tests.
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8.0 PARACHUTE FLIGHT TESTS

8.1 TEST REQUIREMENTS AND OBJECTIVES

8.1,1 Rational for Flight Testing

Examination of the operational requirements for a Mars sub sonic descent
parachute has led to the following conclusions:

1. The status of parachute technology is inadequate for the Mars
application and a pre-Voyager technological development program
will be necessary.

2. Ground test techniques are inadequate for both the pre-Voyager
technological development and Voyager development programs, and
must be augmented with flight tests in the Earth's atmosphere.

The technological status of the parachute is inadequate because the tenuous
atmosphere of Mars requires parachute deployment at very low dynamic
pressures (4 lb/ftz), for which very limited experience exists and for which
present analytical techniques are not applicable, This uncertainty is
particularly important because many facets of the mission and system
design, are significantly dependent on the parachute performance capability
including allowable entry weight, Until the uncertainties are removed by
flight system tests, formulation of authoritative mission and design con-
cepts is not possible.

The ground test techniques are inadequate because of scaling limitations
and infinite mass effects. Scaling effects associated with fabric porosity,
flexibility, flow characteristics, etc., limit scaling to approximately one-
tenth in parachute area and payload mass. This means that the scale
model should be at least 27 feet in diameter, based on the reference design
parachute diameter of 81 feet. No existing wind tunnel can accommodate
this large a diameter at the correct flow (M = 1. 2) and dynamic pressure
(4 1b/ft2). Sleds, whirl towers and the like cannot simultaneously simulate
M=1,2and q=4 lb/ft‘2 because the sea level atmosphere is too dense,

Infinite mass effects refer to the effects of fixed tiedown of the parachute
shroud lines in ground testing (i.e., wind tunnel). Under real conditions
the shroud lines are attached to a finite mass (the payload) and there is a
mutual interaction between the dynamics of the payload and the dynamics of
the parachute. As a consequence, fixed tiedown conditions can produce
invalid results, particularly in canopy inflation, opening shock loads and
parachute/payload stability.
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The wake of the bluntvehicle could affect parachute performance and such
wake effects must be evaluated. However, existing transonic wind tunnels
limit the maximum vehicle model diameter to about one to two feet,

Since this diameter would be scaled from the reference diameter of 15 feet,
reliable wake measurements cannot be made.

8.1.2 Scale of Tests

The large size and weight of the entry vehicle and parachute make it
attractive from the cost viewpoint, to conduct flight tests with subscale
parachutes and payloads. In the pre-Voyager technological program the
majority of the recommended tests are one-tenth scale. In addition, two
full-scale tests are recommended to check scaling and blunt vehicle wake
effects., One-quarter scale tests were also examined to determine the cost
increment over one-tenth scale tests., The purpose of one-quarter scale
tests would be to improve on limit scaling (one-tenth) and also to provide
backup data if the one-tenth scale is attempted and found undesirable.

In the Voyager development program the parachute test program is equally
divided between one-tenth scale and full-scale tests. There is a greater
demand for full-scale tests because of the need for testing operational
prototype hardware.

8.1.3 Deployment Conditions

The parachute deployment envelope is presented in Figure 3 on a plot of
Earth altitude versus velocity, These parameters define both dynamic
pressure and Mach number which can be plotted as contours of constant
value. Both the Mars operational envelope and the recommended Earth
test envelope are shown. The Mars envelope is bounded by a Mach number
range of M = 0,7 to 1.2 and a dynamic pressure range of q = 5.0 1b/ft2,

The Mars envelope results from entry and atmosphere uncertainties and
limitations of the parachute initiation system. As discussed in paragraph
2.5.3, Book 6, Vol. V the firm constraints on deployment are a maximum
Mach number of M = 1.2 and a maximum Mars deployment altitude of
27,500 feet, The latter constraint is imposed to limit the maximum descent
time to satisfy relay communication requirements. These constraints are
satisfied by initiating deployment at a time after peak deceleration which is
a function of entry velocity and peak deceleration providing the limit
altitude of 27, 500 feet has been reached. The delay time ¢, from peak to
deployment is expressed as:

t, = (0.041V, ~225) g2,

where

o =2x1077 v, + 0331
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The Earth test envelope represents a somewhat arbitarary extension of the
operational envelope. The purpose of the extension is to account for pos-
sible future variations in the Mars atmospheric model, the entry vehicle
design concept and entry profile, and the type of deployment initiation
system, all of which would affect the deployment envelope. Another pur-
pose is to determine the minimum dynamic pressure and maximum Mach
number limits of parachute performance. This determination is necessary
in the establishment of design and performance margins and associated
failure modes.

It should be noted that a problem in simulating the Mars atmospheric
density may limit flight testing at the envelope corner which provides low
Mach number and high dynamic pressure. This corner is at the lowest
altitude in the envelope (approximately 100, 000 feet). The Earth altitude

at which the atmospheric density is equal to the Mars surface density is

a little under 120, 000 feet for the minimum density model, VM-7. Below
120, 000 feet the density will be too high and descent velocities less than
operational values, even though the deployment dynamic pressure is properly
simulated. This problem can best be solved by testing at higher subsonic
Mach numbers when high dynamic pressure conditions are desired. Varia-
tion of parachute performance over the subsonic regime should not be
significant but can be checked by testing down to M = 0. 7 at the lower
dynamic pressures. In general, the transonic regime is of greater concern
and most of the testing will be scheduled for this regime.

8.1.4 Payload Mass Simulation Versus Payload Weight Force Simulation

In the Mars operational flights, the entry vehicle shell is separated from
the suspended payload immediately after the peak opening shock load of

the parachute. The shell cannot be released earlier since its ballistic
coefficient is smaller than the suspended payload coefficient and there
would be danger of separation failure or post-separation collision. The
shell is released as soon after deployment as possible in order to maximize
deceleration of the suspended payload. In the full-scale parachute and full-
scale parachute/separation flight tests, the boiler plate mockup of the
entry shell, which has the correct mass, is jettisoned. For the subscale
parachute flight tests the mass change due to the entry shell separation is
simulated by jettisoning ballast, The suspended payload then has the cor-
rect mass, but since it is in the Earth's gravitational field its weight force
will be larger than the Mars equivalent and descent velocities will be much
higher than operational values. Additional ballast must then be jettisoned
in order to reduce the suspended payload mass (by 61 percent) such that the
weight force is correctly simulated. Jettisoning of this additional ballast
is the subscale tests in not feasible since the remaining suspended weight
is less than that required for the support systems such as telemetry,
instrumentation, and power supply. Sufficient weight margin exists in

the full-scale tests so that the additional ballast can be jettisoned and both
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the mass and weight force can be simulated on one flight, Weight force
simulation in the subscale tests is accomplished by using a larger parachute
on separate tests designed to operate at the proper area to weight ratio.

It should be noted that neither the mass simulation nor the weight force
simulation is an ideal solution to the problem. For instance, for the
weight simulation case, the descent velocity and flow field over the
parachute is correct, but the parachute/payload mass combination is not
simulated and stability results may be questionable., The problem is
reversed in the mass simulation.

PRE-VOYAGER SUBSCALE PARACHUTE TESTS

8.2.1 Test Program

The selected approach for the pre-Voyager subscale parachute tests is a
surface-launched Nike/Nike/Dart vehicle to provide the desired deploy-
ment conditions for a one-tenth scale parachute system. The Nike/Nike

is a two-stage booster for the Dart test vehicle, an existing unpowered
payload vehicle. The recommended test program consists of 32 flights at
various deployment conditions within the test envelope described in
paragraph 8.1.3. These flights would consist of both payload mass simula-
tion and payload weight simulation.

A number of candidate test techniques were considered before the recom-
mended approach was selected. The candidate techniques included various
surface-launched and balloon-launched tests at both one-tenth and one-
quarter scale. One-tenth scale, as previously mentioned, is regarded as
the lower limit for reliable scaling. One-quarter scale testing was investi-
gated to determine if it could be achieved without a significant increase in
cost. The evaluation was reduced to three logical candidates: the selected
program, a surface launched Honest John/Nike/Cree in quarter scale, and
a balloon launched, newly designed test vehicle propelled in a climb by an
Iroquois rocket, The superior candidate was not immediately apparent and
a quantitative and qualitative comparison of their merits and deficiencies
was required. The comparison was made on the basis of cost, test con-
dition dispersion, launching ease, flexibility in adjustment of test condi-
tion and probability of test success. The results are summarized in

Table XXIII, The comparison between the Nike/Nike/Dart and the Honest
John/Nike/Cree was rather close, with the exception of cost, the Honest
John/Nike/Cree being 1,5 times more expensive, The surface-launched
vehicles are superior to the balloon-launched program in all factors except
test condition dispersion and flexibility in adjustment of the test condition,
The surface-launch dispersion disadvantage was not regarded as significant
because the dispersions may be reduced by initiating parachute deployment
based on real time deployment condition data. For instance deployment
many be triggered by radio command in response to external tracking or
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by telemetered data on either dynamic pressure or Mach number, In a
given flight deployment can be initiated at the desired dynamic pressure
and the error in Mach number accepted., The role of the two parameters
can be reversed in another flight. If accuracy in both test conditions is
required in the same flight, the deployment can be triggered to equalize
the dispersion in each condition, The balloon approach has greater flexi-
bility in adjustment of test condition because the release altitude of the
rocket propelled vehicle can be varied. This represents an additional
adjustment parameter which is easily implemented without configuration
changes, This advantage is not significant because the surface launched
vehicles have adequate flexibility by varying launch angle, time delay
between staging, ballasting, and aerodynamic drag. In the remaining
factors of cost, launching ease, and probability of success, the surface
launched programs are definitely superior to the balloon technique. The
balloon program is more than three times as expensive as the Nike/Nike/
Dart. The balloon and its control equipment are more expensive than the
Nike/Nike booster, and the newly designed balloon test vehicle has greater
development costs than the existing Dart vehicle. Launching ease of the
surface launched vehicles was judged considerably superior to the balloon
launch tecause the surface launched program requires less support equip-
ment and personnel and is not subject to the same weather constraints as
the balloon program. The balloon program requires mobile launch equip-
ment with launch sites selected on the basis of prevailing winds. Launches
must be delayed until the right combination of safe ground winds and
desired winds aloft occur., As a consequence, more personnel and support
equipment are required and launching delays are more frequent. The com-
parison of probability of test success was based on a qualitative considera-
tion of test histories of both approaches. The flight record of the surface
launched vehicle is very good. Balloons appear to have a greater number
of failures due to wind damage during launch and quality control failures
(leaks) after launch.

The recommended flight test program can be divided into three blocks of
tests. The prime objective of the first two blocks will be configuration
screening. The last block is for additional tests of the selected configura-
tion, The first block (twelve tests) will consist of three different types of
parachutes: ring-sail, extended scaled, and annular, All tests shall
utilize weight force simulations and each configuration will be tested at
four deployment conditions, The four conditions will be at the extremities
of the Mars operational deployment envelope, It is anticipated that one of
the candidates would be eliminated on the basis of the results of the first
block of tests. The second block (eight tests) will consist of the two re-
maining candidates; each configuration tested at four deployment conditions
and all tests using payload mass simulation. These tests will also be at
the extremities of the Mars operational deployment envelope.
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As a result of these tests, reference configuration can than be selected.
The third block will consist of 12 tests of the selected configuration at
various deployment conditions with both payload weight force and payload
mass simulation. Two canopy geometries and two suspension geometries
will be evaluated. Some of the deployment conditions will extend beyond the
Mars operational envelope to higher Mach numbers and lower dynamic
pressures in a search for critical performance limits.

8.2.2 Launch Vehicle Configuration

The launch vehicie configuration for the one-tenth scale parachute tests
consists of two Nike solid rocket stages and a payload interface adapter

as illustrated in Figure 4, Both stages are stabilized by aerodynamic fins
which are canted to produce vehicle spin, No active system is used for
flight path control. Second-stage and payload separation are accomplished
by differential aerodynamic drag between the stages being separated. A
clamping device locks the payload to the second stage until second-stage
ignition to prevent inadvertent payload separation at first stage burnout.
Second-stage burnout and separation occur at an altitude of approximately
30, 000 feet after which the fin and spin stabilized test vehicle coasts to
the deployment altitude,

Flight path adjustments to achieve various altitudes and Mach numbers
within the deployment envelope are achieved by varying time delay between
staging, launch angle, ballast in second-stage and drag devices in approxi-
mately that order of preference.

The Nike/Nike is capable of boosting a 200-pound, 9-inch diameter test
vehicle to 170,000 feet at M = 1,5 which covers most of the high energy
end of the arbitrarily selected deployment envelope. This capability exists
for launches from the White Sands Missile Range or equivalent elevations.
If launched from sea level the capability extends to approximately 150, 000
feetat M = 1,5,

8.2.3 Test Vehicle Configuration

In order to achieve the desired payload/altitude performance the test
vehicle must be a slender, low-drag configuration with the maximum
diameter restricted to about 9 inches. Canted fins for aerodynamic
stability and to maintain the launch vehicle induced spin rate will also be
required. In the interest of cost, schedule and reliability factors, an
existing vehicle such as Space Data Corporations' Dart vehicle is recom-
mended. This is a versatile vehicle in which relatively standard fuselage
sections suchas a telemetering housing, beacon and programmer housing,
payload housing, nose cone, etc., may be arranged in various tandem
combinations as required, For the purposes of this test the configuration
would consist of (in order from base to nose) aerodynamic fin section,
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Battery power supply

Programmer and control circuitry

Radar beacon

Command reciever

Main Parachute

Pilot chute

Camera

Tensiometer

Accelerometers

Ram and static pressure sensors

Y0-Yo despin mechanism

Umbilical connector

Jettisonable ballast
The nose-cone weight is 23 pounds, to which must be added ballast to
increase the jettisoned weight to 101 pounds which is the scaled weight
of the entry vehicle shell. The remaining weight of the vehicle should not
exceed 102 pounds which is the scaled weight of the suspended payload
including the parachute. Estimates indicate that this weight limit can be
satisfied unless water recovery equipment is required. The weight is
marginal for this case., It should be noted, however, that these weight

limits are arbitrary and deviations are possible for a number of reasons:

1. The full-scale entry weight of 2040 pounds is for the current con-
cept of a Voyager capsule. The ultimate value may be significantly
different.

2. The one-tenth scale factor is not an inflexible selection. Its
selection was economically motivated. Smaller scale is not desirable,
but larger scale to accommodate the weight of necessary support
equipment is feasible, The only limit on scale increase is the payload/
altitude capability of the Nike/Nike. Preliminary estimates indicate
that the test vehicle weight can be increased above 200 pounds without
recourse to a larger launch vehicle. Employment of a larger vehicle
such as an Honest John/Nike increases cost by a factor of 1.5, a

-103-



magnitude whose reasonableness can be judged only from within the
confines of budgetary realities.

8.2.4 Flight Sequence

The flight sequence is pictorially illustrated in Figure 6, The Nike/Nike
is launched at an angle of approximately 80 degrees, the exact angle
depending on range safety requirements, impact area availability, and the
desired test conditions at altitude. The vehicle is launched from a zero-
length launcher at the desired angle. Acceleration by the first-stage Nike
is very high, 20 g or more, Velocity will increase rapidly and the vehicle
will begin spinning almost immediately. First-stage burnout occurs about
3.5 seconds after launch, Stage separation occurs immediately due to
differential drag between the stages., The vehicle coasts for a short dura-
tion, the magnitude being a variable depending on the deployment conditions
desired. The second-stage Nike burn time is also 3.5 seconds and payload
separation is produced by differential drag., The fin stabilized and spinning
test vehicle then coasts towards the deployment altitude. Before reaching
the deployment altitude the aerodynamic fins and its fuselage section are
jettisoned to provide access for parachute deployment. This fin jettison
occurs when the dynamic pressure drops to low values and enough before
parachute deployment to reduce collision hazards. The deployment
sequence will be initiated when the vehicle reaches either the desired Mach
number or dynamic pressure or a judicious combination of both parameters,
The initiation signal will originate either from radio commands based on
ground tracking and/or telemetry data or from vehicle instrumentation.
The deployment sequence will be automatic; despin activation, parachute
deployment, and nose-cone ejection in rapid succession. More detailed
analysis may indicate that the order of the first two sequences should be
reversed or occur simultaneously, the objective being to minimize coning
divergence before parachute deployment. After reaching terminal velocity,
the parachute and payload descend to the surface. The vehicle is recovered
for postflight examination of the parachute and camera film, Telemetry,
phototheodolite and radar tracking data are recorded throughout the flight,

8. 2.5 Alternative Test Method Considered - Balloon Launched One-Quarter
Scale Test Vehicles

8.2.5.1 Test Program
Although the balloon launched technique is not recommended, the results
of its study are reported because of potential interest in this test

technique,

One-quarter scale test vehicles were considered and three modes of
deployment after release from the balloon were investigated:
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1. Rocket propelled climb
2. Unpowered free fall
3. Rocket propelled dive

The rocket-propelled climb was favored because it required lower
release altitudes and hence smaller balloons., The unpowered free

fall was of interest because of its simplicity. A speical test vehicle
was designed which could accommodate all three modes of employment
by using a cylindrical adapter to change the length of the fuselage. Two
solid rocket motors of different length were used for the two powered
modes, hence the need for adjusting fuselage length, An Iroquois
rocket was used for the climb and a Sparrow sustainer motor for the
rocket propelled dive mode, The test vehicle is a slender body which
simulates only the scaled mass of the operational prototype and not its
external shape. Flight path control is provided by vehicle spin. Both
spin and despin are produced by solid rockets. The high-altitude
balloon is a zero-pressure type, fabricated from Mylar film reinforced
with bonded Dacron scrim. Balloon sizes for the climb mode will

vary from 0. 3 to 8 million cubic feet depending on the deployment
condition,

The performance of the rocket climb vehicle is shown in Figure 7
which also demonstrates how various test conditions within the
operational and test deployment envelopes are achieved. The vehicle
trajectory is plotted in terms of altitude versus velocity, The rocket
burn part of the trajectory is omitted for clarity. The ascent coast
from burnout to apogee and the descent coast are shown for various
launch altitudes. The spin stabilized attitude during rocket burn is
65 degrees (nose-up) for all the curves. Discrete time durations
from burnout are marked on each trajectory. Time between burnout
and deployment varies from 15 to 50 seconds depending on the desired
test condition. Test conditions in the upper part of the deployment
envelope can be achieved by launching at altitudes higher than those
illustrated in Figure 7.

Unpropelled free-fall trajectories are shown in the same coordinate
system in Figure 8. The vehicle reaches rather high velocities under
gravitational acceleration alone. Release altitudes between

130, 000 and 170,000 feet would be required to cover the entire
operational deployment envelope. Required balloon volume,
however, increases very rapidly at these altitudes. For instance,

the required balloon volumes at altitudes of 130,000, 140,000, and
150, 000 feet are, respectively 3.8, 8.5, and 28. 5 million cubic

feet. The largest balloon built to date was 13 million cubic feet;

28. 5 million cubic feet may be achievable in the near future. Thus the
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free-fall mode has application only at the lower end of the deploy-
ment envelope,

The rocket propelled dive trajectories are also plotted in altitude
versus velocity coordinates, Figure 9. Launches from 140, 000,

145, 000, and 150, 000 feet altitudes are shown., Rocket burn times
must be short (2. 04 seconds) to compliete burnout before the deploy-
ment condition is reached and some time must be provided to accom-
plish vehicle despin. This requirement will limit the minimum launch
altitude to 140, 000 feet if a test condition within the operational
envelope is desired; burnout occurs about 2 seconds before the opera-
tional envelope for a launch from 140, 000 feet. The upper limit on
the use of the dive mode is about 150, 000 feet as constrained by the
required balloon size (28. 5 million cubic feet), Thus the range of
test conditions achievable with the dive mode is severely limited. In
addition, the rocket climb mode provides the same test conditions
with a much smaller balloon and hence the propelled dive mode is less
desirable,

For the rocket climb mode horizontal range of the vehicle during
powered and coast flight is presented in Figure 10 as a function of
altitude. Ranges for trajectories launched from various altitudes
are shown with the time from burnout indicated. Range from point of
release to deployment will be between 3 and 8 nautical miles which
would not cause insurmountable range safety problems, but would
require control of the direction of launch.

8.2.5,2 Balloon Configuration

The balloon configuration consists of a zero-pressure balloon,
recovery parachute, and balloon adapter. The balloon adapter is
supported from the balloon by the parachute as shown in Figure 11.
The parachute canopy is attached to the base of the balloon and the
balloon adapter hangs from the parachute shroud lines. Balloon size
required would vary depending on the deployment condition desired.

The balloon is helium filled and fabricated from bonded gores of
Mylar film, reinforced with Dacron scrim bonded to the Mylar, A
polyethylene balloon is not applicable because the total payload
including balloon adapter approaches 1000 pounds which is too large
for the strength characteristics of the polyethylene material, For
the rocket climb after balloon release technique, release altitudes
would vary between 70,000 and 130, 000 feet requiring balloon sizes
vary from 0. 3 to 8 million cubic feet based on a balloon payload of
960 pounds which includes the test vehicle (660 pounds) and the balloon
adapter (300 pounds). The adapter weight is its weight at release
altitude; ballast, which is carried for control purposes, would have
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been previously jettisoned. The balloon volumes were also based on
using Mylar scrim material of 0. 35-mil thickness and weighing 3.5
1b/1000 ft2 (Schjeldahl's GT-111 material). Balloon volume versus
maximum altitude for various payloads is presented in Figure 12,

For the free-fall test techniquel20, 000 feet to as high as 150, 000 feet,
if desired. Balloon sizes would be from 3.8 to 28, 5 million cubic

feet based on the same balloon material and a balloon payload of 760
pounds (300 pound adapter and 460 pound test vehicle), For the rocket
dive from balloon release technique, release altitudes would be 140, 000
to 150, 000 feet, requiring balloon sizes from 14.5 to 28. 5 million
cubic feet. The test vehicle weight is 530 pounds and the total balloon
payload is 830 pounds.

The balloon adapter is a cylindrical structure which supports and
releases the test vehicle and houses the balloon control and support
equipment, The adapter is hung from the recovery parachute shroud
lines by an aximuth bearing. The bearing permits rotation of the
adapter and test vehicle relative to the balloon and parachute to facili-
tate launching of the vehicle on a selected azimuth. Cold-gas reaction
jets on the adapter provide the required torque and azimuth is sensed
by a gyrocompass or equivalent instrument. The balloon equipment
which is housed in the adapter consists of a command receiver and
control circuitry, battery, camera altimeter transmitter, separation
mechanism, ballast and jettison controls, gas valve controls, azimuth
cold-gas reaction jet system, and umbilical connector. The command
receiver and control circuitry receive and implement ground com-
mands for telemetry calibrations, external/internal power switching,
ballast ejection, balloon gas valving, azimuth control, camera
initiation, test vehicle release and recovery parachute release. The
battery supplies electric power to both the adapter equipment and the
test vehicle prior to release. The camera is turned on just prior to
vehicle release to record this event plus the subsequent spinup and
rocket ignition. The ballast jettison controls and gas valve controls
implement ground control of rate of ascent for compensation of
unfavorable wind profiles and the effects of balloon adiabatic cooling.
The umbilical connector between the adapter and the test vehicle con-
tains power and signal leads, such as command, telemetry calibration,
and diagnostic data. For the free-fall and rocket dive configuration
the base of the test vehicle is supported at the base circumference by
the cylindrical adapter which is the same diameter. Four ball-lock
devices are used for attachment and release. For the rocket climb
configuration the vehicle must be hung from the adapter at a steep nose-
up attitude equal to the desired launch attitude. For convenience, the
same cylindrical adapter is used but the vehicle is supported near

its c. g., by four cables secured to the base of the adapter. The
cables are attached to the vehicle by a two-strap rig around the
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diameter at reasonable values resulted in the selection of a very long
motor to achieve the required total impulse, Maintaining the base
diameter of the fuselage throughout the length of the rocket would
provide an internal volume far in excess of that required by the sup-
porting subsystems. In fact a short (15-inch) cylindrical section at
the base was adequate as shown in the inboard profiles. A conical
section, largely empty, was added forward of the cylindrical section
for streamlining, The remaining fuselage requirement was a cylinder
in front of the rocket to house the jettisonable and fixed ballast and to
provide structural support for the impact spike and the pitot-static tube.
The jettisonable ballast, which simulates mass changes due to separa-
tion of the entry vehicle shell in the operational flight, consists of
short or dust which is ejected by severing the nose of the fuselage with
a linear-shaped charge as shown in Figure 13 and 14. The fixed
ballast, which is required to increase the vehicle mass to the scale
value, is installed inside the impact spike to aid forward location of
the center of gravity., Thrust vector stabilization is provided by
vehicle spinup with solid spin rockets. The high altitude at rocket
ignition results in very low dynamic pressures throughout rocket

burn and the use of canted aerodynamic fins for stability was judged
infeasible. If the status of this alternative approach changes, this judge-
ment should be examined quantitively. An approximate analysis of

the spin dynamic revealed that required spin rates may be as high as
100 to 200 rpm. These rates are considered too high to accommodate
by using a swivel between the parachute shroud lines and the support
lines. Despin to a value lower than 100 rpm is desirable, Complete
despin is not desirable because coning divergence may be too excessive.
Coning half-angle and velocity vector pointing errors as a function of
spin rate are presented in Figures 15 and 16 for various c.g., loca-
tions relative to the rocket nozzle. These results are approximate
since aerodynamic effects were neglected., The error budget used

for the analysis is shown in Table XXIV,

The spin and despin rockets are mounted internal to the conical
section with the nozzles firing through large cutouts in the external
skin, External mounting would also be suitable because of the low
dynamic pressure environment.

An annular plate covers the base of vehicle except for cutouts for the
rocket nozzle and the umbilical connector. This plate will give pro-
tection from the rocket plume and, when jettisoned just prior to
parachute deployment, will provide simultaneously the necessary
exposure of the pilot and main parachutes, tensiometer and camera,
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TABLE XXIV

SPIN ANALYSIS ERROR BUDGET ~ 1/4 SCALE
PARACHUTE FLIGHT TESTS -~ ROCKET CLIMB

FROM BALLOON RELEASE

Error Source

Value (1 sigma)

Initial attitude error at separation

Spin rocket location error

Spin rocket impulse error

Angular misalignment of spin rocket thrust vector
Thrust rocket location error

Thurst rocket impulse error

Angular misalignment of AV rocket thrust vector
c.g., location error

Tipoff rates

1 degree
0. 042 inch
1 percent

0. 167 degree
0.042 inch
1 percent
0.167 degree
0.0833 inch

0.5 degree per second|
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The important subsystems and components are:‘
FM/FM Telemetry
Battery Power Supply
Programmer and Control Circuitry
Main Parachute
Pilot Chute
Camera
Tensiometer
Accelerometers
Pitot-Static Tube
Iroquois Solid Rocket (or Sparrow Sustainer)
Spin and Despin Solid Rockets
Umbilical Connector
Impact Spike
Jettisonable and Fixed Ballast

The burnout weight of each vehicle is 464 pounds. * The initial
weights of the climb vehicle (Iroquois rocket) and dive vehicle
(Sparrow sustainer rocket) are 940 and 831 pounds, respectively,

*
This weight is one fourth of a prototype vehicle weight of 1855 pounds, the reference design weight at the time this test
vehicle was analyzed.
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8.2.5.4 Flight Sequence

The prelaunch launch ascent and test vehicle release sequences are
identical to the full-scale parachute test to be described in paragraph
8.3.4. The sequences subsequent to vehicle release are somewhat
different and are discussed below. The flight sequences for the rocket
climb mode and free fall mode are illustrated in Figures 17, and 18,
respectively.

The vehicle is released from the ballon at various altitudes depending
on the desired test condition within the deployment envelope. For the
purpose of discussion, a typical case will be selected: release at

100, 000 feet which will provide the deployment conditions, M= 1.2 and
g = 4 1b/ft2. The test vehicle is released at an attiude angle of 65 de-
grees and spin stabilized immediately by spin rockets. After spin
rocket burnout the Iroquois rocket is ignited-3 seconds after release.
The vehicle starts climbing and accelerating and 7. 8 seconds later,

at burnout, is at an altitude of 106, 000 feet and a velocity of 2030 ft/sec.
Shortly after burnout the programmer ejects the vehicle aft cover which
exposes the parachute canister, camera and tensiometer prior to de-
ployment. The cover which protects the equipment from the rocket
plume is jettisoned as early as possible after burnout to increase its
dispersion and reduce the hazard of collision with the deployed para-
chute. The vehicle coasts in a climb and slowly decelerates. Twenty-
six seconds after burnout it reaches an altitude of 140, 000 feet and a
velocity of 1250 ft/sec. The vehicle is now within the operational
parachute deployment envelope (q = 4 psf, M= 1. 2) and the deployment
sequence is initiated by the programmer (or based on some other
parametric, depending on the accuracy desired for the deployment
conditions). First the vehicle spin rate is reduced from its initial

high rate (200 rpm or greater) to a value less than 100 rpm by spin
rockets. Immediately afterward, to alleviate coning angle divergence,
the pilot chute is mortar ejected and pulls out the main parachute.

Just after the peak opening shock load is sensed by an accelerometer,
dust or shot ballast is jettisoned to simulate the mass change due to
entry-vehicle shell separation in the operation case. The parachute
and vehicle descend slowly to the surface and are recovered for post-
flight evaluation. No additional ballast is jettisoned to simulate the
Mars weight force (as would be the case for the full-scale vehicle)
because the remaining payload weight allowance would be too small for
the necessary equipment such as telemetry, instrumentation, etc. For
weight force simulation, another flight is required using a larger para-
chute with the same payload weight. The balloon adapter is recovered
by parachute in the same manner as the full-scale test.
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The flight sequence for free-fall mode is very similar to the rocket
climb mode except that the vehicle is released nose down, it is not
spin stabilized, and rocket propulsion is not used. Ina typical case,
illustrated in Figure 18, the vehicle is released at 125, 000 feet and
free falls under gravitational acceleration. Twenty-three seconds
later it reaches 117, 000 feet at approximately M = 0.7 and q = 4 1b/ft2
which is the low-energy end of the deployment spectrum.

The flight sequence for the rocket dive mode is even more similar to
the rocket climb mode, the principal difference being that the vehicle
is rocket-propelled straight downward instead of in a climb. In a typi-
cal case the vehicle is released at 145, 000 feet and, after spin stabili-
zation, the Sparrow sustainer rocket is ignited. Burnout occurs 2 sec-
onds later at 144, 000 feet and a velocity of 1100 ft/sec. The vehicle
free falls and accelerates for 5 seconds to 138, 000 feet at which point
the deployment condition, M= 1.2 and q = 4.5 1b/ft2, is reached.

8.2.5.5 Deployment Condition Dispersion

A preliminary study of deployment condition dispersion of the ballon-
launched vehicle was made for the comparative evaluation of the candi-
date test vehicles. The study also provided some insight into the rela-
tive dispersions in deployment conditions resulting from various methods
of initiating deployment. Potential error sources for the dispersion
were catalogued, the insignificant eliminated by inspection, and the
significant analyzed in limited detail. An authoritative, in depth,
analysis was beyond the scope of the study.

The error sources investigated were rocket total impulse (3 percent -

3 o), spin-stabilized pitch attitude during rocket burn and coning half
angle during rocket burn. The last two were obtained from the spin
analysis report in paragraph 8.2.5.3 which included nine error sources
(Table XXIV) hence the dispersion analysis is really based on more
than three errors. The effect of the coning angle is to reduce the effec-
tiveness of the rocket total impulse in accelerating the vehicle this
reduction being an amount determined by the cosine law. The trajectory
dispersion due to the total impulse error was computed to determine
the deployment condition dispersion. The combined rocket and coning
angle total impulse error is about 5 to 10 percent depending on the

exact spin rate that is used. The effect on deployment is presented in
Table XXV. The dispersions due to 5, 10, and 15 percent total impulse
errors are presented. The results are expressed in terms of disper-
sions of six trajectory parameters when one of the parameters

is at the correct value. For instance, when the dispersed
trajectory is at the reference Mach number, the value of y,q, t, h, and
V are recorded as the dispersions for that reference parameter (Mach
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TRAJECTORY DISPERS ION RESULTS

TABLE XXV

-1/4 SCALE PARACHUTE TEST-ROCKET CLIMB FROM BALLOON RELEASE

Case Constant At Ay Ah AV AM Aq
No. Parameter (seconds) (degrees) (feet) (fps) {psf)
1.0
(-5 percent time 0 -0.997 -1656 +6.575 +0. 009 +0.34
onig) altitude -1.943 +1.146 0 -33.329 -0.030 -0.21
velocity -0.320 -0.655 -1385 0 40.003 +0.24
Mach No. -0.460 -0.505 -1266 -3.029 0 0.20
dynamic
pressure -1.167 +0.274 - 684 -17.571 -0.014 0
2.0 time 0 -1.716 +4367 -111. 787 -0.110 -1.26
{+5 percent altitude +5. 083 ~7.088 0 + 2.580 +0, 004 +0.01
) velocity +4.973 -6.984 + 105 0 0 -0.02
Mach No. +4.956 -6.968 + 120 - 0.388 0 -0.03
dynamic
pressure +5. 045 ~-7.049 + 39 + 1.610 +0.003 0
3.0 time 0 +1.053 -4911 -111.074 | +0.120 +1.89
(-5 percent altitude -6.208 +7.984 0 - 3.602 -0.003 -0.03
vyl velocity -5.999 +7.729 - 144 0 0 +0.02
Mach No. -6.010 +7.743 - 136 - 0.199 0 +0. 02
dynamic
pressure -6.070 +7.815 - %4 - 1.244 -0.001 0
4.0 time 4} -5.548 -9495 - 41.035 +0. 056 +2.47
(-10 percent altitude -12.696 +9.858 ¢] -211.007 | -0.198 -1.23
on tg velocity - 1.869 -3.699 -7782 0 +0.019 +1.61
Mach No. - 2.820 -2.708 -6953 - 20.486 0 +1.24
dynamic
pressure - 6.634 +1.939 -3907 -100.486 | -0.086 0
5.0 time 0 -4.280 +8169 -221.775 -0.220 -2.10
{10 percent altitude +9.282 -13.659 0 + 4.124 | +0.006 +0.03
Y1) velocity +9.120 -13.527 + 166 0 +0.003 -0.03
Mach No. +8. 990 -13.421 + 300 - 3.323 ¢ -0.07
dynamic
pressure +9.204 -13.595 + 80 + 2.140 |+ .004 0
6.0 time 0 + 1.589 -10, 327 +218.682 | +0.230 +4.73
(-10 percent altitude -14.124 +17.775 0 - 7.448 -0.002 -0.05
yt) velocity -13.538 +16.992 - 308 0 +0.004 +0. 05
Mach No. -13.910 +17.489 - 112 - 4.730 0 -0.01
dynamic
pressure -13.832 +17.385 - 153 - 3.741 | +40.001 0
7.0 time 0 -11.996 -21, 621 +103.230 | +0.236 +8.38
(-15 percent altitude -- -- -- e -- -
on tg) velocity - 4.498 - 8.112 -17, 040 - 0 +0.035 +4.52
Mach No. - 5.925 - 6.733 -15, 7117 - 32.225 0 +3.61
dynamic
pressure -14.748 + 3.734 8,917 - 27.892 | -0.190 0
8.0 time 0 - 7.950 +11, 387 -326.954 | -0.320 -2.67
(+15 percent altitude +12.713 -19.915 0 + 4.943 | 4+0.004 +0. 03
rr ) velocity +12.531 -19.789 + 197 0 +0. 001 -0.04
Mach No. +12.490 -19.760 + 242 - 1.129 0 -0.05
dynamic
pressure +12.633 -19.859 + 87 + 2.759 | 40.003 0
9.0 time 0 + 1.704 -16,213 +320.329 | +0.350 +9.05
(-15 percent altitude -27.256 +34.563 0 - 7.580 | -0.003 -0.06
¥ velocity -25.463 +31.940 - 355 0 +0.004 +0. 06
Mach No. -25.910 +32.590 - 256 - 2.141 0 -0.02
dynamic
pressure -26.277 +33.126 - 180 - 3.769 | -0.002 0
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number). The dispersions for the other reference parameters are also
recorded. This information is useful, even though M and q are the prime
factors of importance in deployment simulation, because the other para-
meters are candidates for deployment initiation. The data will show
which are the best initiation parameters.

The deployment condition dispersion due to the third error, spin-stabil-
ized pitch attitude during rocket burn ( yT) (approximately 10 degrees)
was also determined from trajectory dispersion and the results presented
in the same manner in Table XXV. The 10-degree error (15 percent)

in attitude produces a negligible dispersion in the deployment conditions
(M and q) for all the initiation parameters except time. Therefore, un-
less time is used as the initiation parameter, the total deployment con-
dition dispersion will be that due to the rocket impulse and coning angle
errors.

8.3 PRE-VOYAGER FULL-SCALE PARACHUTE TESTS

8.3.1 Test Program

The selected program for the pre-Voyager full-scale parachute tests is a
ballon-launched test vehicle which is rocket-propelled in a climb to the
desired deployment conditions. The high-altitude balloon is a zero pressure
type fabricated of Mylar film reinforced with Dacron scrim. The 6.5 mil-
lion cubic foot balloon releases the test vehicle at 110, 000 feet at a pitch
attitude of 60 degrees. The vehicle is spin-stabilized at this attitude, and
an Alcor rocket motor propels it to the deployment altitude, 140, 000 feet.
The purpose of the vehicle climb is to minimize altitude requirements (and
hence volume) for the balloon. Rocket propulsion is required in any event
to accelerate to the deployment Mach number (M= 1.2). The full-scale

test vehicle is a boilerplate mockup with the external shape and mass
characteristics of the prototype vehicle simulated. The recommended pro-
gram consists of two tests at the high-energy end of the operational envelope
(M=1,2and q = 4 lb/ftz). Payload mass and payload weight will be simu-
lated on both flights by jettisoning extra ballast during the parachute descent.
The two flights should be scheduledearlyinthe pre-Voyager program be-
cause their purpose is to verify the scaling validity of the subscale tests

and to check possible blunt-body wake effects on the parachute performance.

The number of potential launch vehicles available for the full-scale test was
severely restricted due to the large dimensions of the test vehicle (15-foot
diameter). Only two launch vehicles were feasible: the Little Joe II and the
balloon just described. Even the Little Joe II requires a hammerhead shroud
because the test vehicle diameter is larger than the booster's. Theballoon
was a clear choice based on the factor of cost.
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The performance of the test vehicle is shown in Figure 19 in which vehicle
trajectories are plotted in terms of altitude versus velocity for launchings
from various altitudes. All launch angles are 60 degrees. The powered
part of the trajectory from balloon release to burnout is omitted for clarity.
Ascent coast from burnout to apogee and descent coast from apogee are
shown. As indicated, a launch aititude of 110, 000 feet will provide the
desired de;loy:ment conditions during ascent for the two tests (M=1. 2 and

2 = 4 1b/ft*). Since a 60-degree launch angle is about the maximum safe
angle to avoid collision with the ballon overhead, 110, 000 feet is approxi-
mately the minimum lauch altitude from which the desired conditions can
be achieved. Horizontal range of the vehicle during the powered flight and
coast periods is plotted in Figure 20 as a function of altitude for several
trajectories launched from different altitudes. Time from burnout is indi-
cated on the chart. For the reference trajectory, deployment occurs about
10 seconds after burnout or 5 nautical miles from the point of balloon re-
lease. This magnitude won't create insurmountable range safety problems
but it is large enough to require control of the direction of launch.

8.3.2 Balloon Configuration

The balloon configuration consists of a reinforced Mylar, zero-pressure
ballon, recovery parachute, and balloon adapter. The adapter is supported
from the balloon by the parachute in the same arrangement described for
the one-quarter scale balloon launched parachute tests. The configuration
is illustrated in Figure 21.

The same type of balloon is recommended as that used for one-quarter scale
tests and reference is made to paragraph 8.2.5.2 for a complete description
of the balloon. The two full-scale, pre-Voyager flight tests will be launched
from the same altitude, 110, 000 feet. The balloon size required for this
altitude is 6.5 million cubic feet. The balloon payload is 3000 pounds which
includes a 2700-pound vehicle and a 300-pound adapter.

The configuration of the balloon adapter structure is different to accommo-
date the larger dimensions of the test vehicle. The structure is a six-foot
long triangular truss which provides a wider spread for the vehicle support
cables. The two support cables are attached to a sway brace structure. The
sway brace is a T-bar configuration (figure 21) which attaches to the vehicle
with an explosive nut at only one point near the center of the long bar. Short
pegs on the ends of the long bar and the T-bar key with hard point, tooling
holes on the vehicle. The suspended attitude of the vehicle is adjusted by
altering the relative length of the two support cables. The point at which
the cables attach to the sway brace are altered at same to ensure that the
suspension centerline goes through the vehicle c. g. The same balloon
control and support equipment are used and these are mounted on the tri-
angular truss. This truss is also supported from the recovery parachute
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shroud lines through a mechanical bearing while azimuthal training is
accomplished in the same manner. The recovery parachute canopy
is attached to the balloon base with a large diameter ring.

8.3.3 Test Vehicle Configuration

Since this vehicle is designed for a pre-Voyager test program, and the
ultimate operational design will not have been defined at that time, the
attempts to simulate current operational concepts will be restricted to the
foliowing:

1. The external vehicle shape to check wake effects.

2. The separation of the entry-vehicle shell from the parachute
suspended payload immediately after peak opening shock loads to
check mass change effects on parachute performance and not
separation system performance.

3. The mass of the vehicle shell
4. The mass and weight force of the suspended payload

The vehicle consists of three major subassemblies; the external shell, the
internal structure (suspended payload), and the Alcor rocket with attached
ballast as illustrated in the inboard profile of Figure 22. The vehicle may
be further broken down into its significant subsystems and components:

1. External structure

2., Internal structure

3. FM/FM telemetry

4. Battery Power supply

5. Programmer and control circuitry

. M ain Parachute

6

7. Pilot Chute
8 Cameras
9

. Tensiometer
10. Accelerometers

11. Rate gyros
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12. Pitot-static tube

13. Alcor solid rocket

14. Spin rocket

15. Vehicle shell separation system
16. Rocket case separation system
17. Recovery parachutes (2)

18. Umbilical connector

19. Ballast

The blunt cone external shell is similar to the operational prototype shape
conceived during this study in order to provide a reasonable simulation of
blunt vehicle wake effects on the parachute. The dimensions are full size
and the mass is the same as the operational prototype. It is a monocoque
shell, stiffened against buckling by a skeleton frame of angles and a fabri-
cated outer ring. No heat shield material is necessary since reentry or
high-speed flight is not involved in the test. The spin rockets are mounted
on the outer ring and the shell recovery parachute (if required for range
safety) is installed on the inner surface of the shell, The internal struc-
ture (suspended payload) mates with the inside of the shell at a separation
ring as shown in the inboard profile (Figure 22). The separation mechan-
ism is a Marmon clamp. Bearing support between the shell and the Alcor
rocket is provided for the rocket-thrust loads. The internal structure con-
sists of a truss assembly which supports the Alcor rocket and other sub-
systems. The parachute harness is attached to the truss assembly. A
swivel support is provided between the attachment harness and the para-
chute shroud lines since the vehicle is not despun. Assuming that the
prototype spin dynamic analyses are applicable, a spin rate of about 30 to
40 rpm will be adequate and this rate will not adversely affect parachute
performance if a swivel is used. The Alcor rocket is attached to the
truss by four explosive nuts to facilitate separation for weight force simu-
lation. Ballast and a recovery parachute (if required for range safety) are
mounted on the rocket case.

Two cameras, aimed rearward, are mounted on the truss assembly for re-
cording parachute deployment and descent performance at high-and low-
frame speeds. A tensiometer between the parachute shroud lines and the
attachment harness measures opening shock and drag loads. Other instru-
mentation consists of accelerometers, rate gyros and a pitot-static tube.
All data except the camera film are telemetered to the ground.
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FLIGHT SEQUENCE
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8.4

The programmer {(or radio command or other internal instrument, if re-
quired, for reducing deployment dispersion) starts the parachute cameras
and triggers mortar ejection of the pilot chute, which in turn pulls out the
main parachute. Shortly after the peak opening shock load as indicated by
an accelerometer, the vehicle shell is jettisoned. Terminal velocity is
reached in a few seconds. After the parachute and suspended payload
descend for about 30 seconds, the expended Alcor rocket case and attached
ballast are jettisoned to reduce the payload weight to a value equal to the
Mars weight force. Thirty seconds later the parachute and payload have
descended to about 120, 000 feet at which point the Earth's atmospheric
density is equal to the Mars surface density for the minimum atmospheric
model VM-7. Below this altitude the environmental simulation degenerates
as the density increases and the descent velocity decreases below opera-
tional values. The descending parachute and payload are tracked to the
ground for recovery of the camera and parachute for postflight evaluation.

The test vehicle shell, which was jettisoned after parachute deployment,
may be recovered by parachute, solely for range safety purposes. There
is a tradeoff here in that recovery by parachute will reduce impact velo-
city, but will increase wind drift dispersion and its attendant hazards.

The balloon adapter is also recovered by parachute. After test vehicle
release, a radio command releases the recovery parachute canopy from
the balloon.

In one of the two recommended full-scale tests the entry vehicle shell
separation will not occur at the peak opening shock load, but will be de-
layed for about 20 seconds. The purpose is to allow more time for meas-
urement of possible blunt-body wake effects on parachute performance.
The 20-second delay is a significant deviation from the operational mode
but is necessary since the operational mode permits only a transient
application of the wake and marginal effects such as incipient inflation
failures may be random enough not to be detected in one or two tests.

VOYAGER SUBSCALE PARACHUTE TESTS

8.4.1 Test Program

The requirements and environment for Voyager subscale tests are identi-
cal to the pre-Voyager subscale tests hence the same test program is
recommended: Nike/Nike/Dart in one-tenth scale evaluation. Fewer
flights are required, however, since only one parachute configuration
will be evaluated. Ten tests are recommended. The discussion of the
Nike /Nike/Dart selection rationale, launch vehicle configuration, test
vehicle configuration and flight sequence for the pre-Voyager program
presented in Section 8.2 is applicable here and will not be repeated.
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.5

The test program consists of ten flights at six deployment conditions for
both payload mass and payload weight simulation. Four of the deploy-
ment conditions will be at the extremities of the operational deployment
envelope for both mass and weight simulation. Two flights with only pay-
load mass simulated will be made at dynamic pressures slightly higher
than the operational envelope at both minimum and maximum Mach number.
These two flights are dynamic structural tests and hence require only pay-
load mass simulation since the weight simulation will produce smaller
loadings on the parachute.

VOYAGER FULL SCALE PARACHUTE/SEPARATION TEST

8.5.1 Test Program

Flight tests of the full-scale parachute will be combined with the separa-
tion subsystems tests in the Voyager program. The launch vehicle selected
for the program is the Little Joe II. Details of this program will be des-
cribed in the Separation Section 9. 0. Only details of the parachute pro-
gram objectives will be discussed here.

The test program consists of ten flights at seven deployment conditions for
both payload mass and payload weight simulation. Five of the develop-
ment conditions will be at the extremities of the operational envelope for
both mass and weight simulation. Two flights with only payload mass
simulated will be made at dynamic pressures slightly higher than the
operational envelope at minimum and maximum Mach number. These two
flights are dynamic structrual tests and hence require only payload mass
simulation. The flights made at high Mach numbers in the operational
envelope will include both payload mass and payload weight simulation on
each flight. The low Mach number flights which occur at lower altitudes
will be restricted to single simulations, either mass or weight, because

of limited descent time for accommodating both simulations. The limited
descent time refer s to the time between deployment and the altitude at
which the Earth's atmospheric density becomes greater than the Mars sur-
face atmospheric density. This altitude is a little under 120, 000 feet for
the minimum surface density model, VM-7. Below this altitude, the in-
creased density reduces descent velocity and produces flow conditions which
deviate from operational values.
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9.0 SEPARATION SYSTEMS FLIGHT TESTS

9.1 TEST REQUIREMENTS AND OBJECTIVES

The status of vehicle separation technology was judged adequate for the require-
ments of the Voyager program and no pre-Voyager technological development
testing, either ground or flight, is recommended. Development flight testing
for design verification during the Voyager program is recommended. Combining
separation testing and full-scale parachute testing on the same flights is recom-
mended because of their compatibility and the attendent cost savings.

The technology of separation in terms of release mechanisms, ejection force
mechanisms, minimizing mechanical interface interference, reliability of mech-
anical and electrical interfaces, etc., has a significant history of development
and flight experience with hardware available in shelf item or near shelf item
status. These techniques and hardware are applicable to the Voyager require-
ments and hence technological development is not necessary. Program devel-
opment flight testing, however, was judged necessary because of the large num-
ber of separation functions, the complexity of some of the separations and
limitations in ground test physical simulation. The separation of the sterilization
canister lid, the capsule from the spacecraft, and the entry-vehicle shell from
the suspended payload are complex separations involving large structures with
mechanical interfaces of large dimension., The entry-vehicle shell separation,
in particular, occurs in a dynamic environment with aerodynamic loads on the
shell, large parachute opening shock loads on the suspended payload, and with
the vehicle possibly spinning and oscillating in angle of attack. Adequate simu-
lation of this environment in ground tests is not feasible. Despite the simulation
inaccuracies, ground tests are still recommended because of the opportunity for
vastly superior instrumentation and visual observation. It should also be noted
that ground test simulation can be very good for vacuum flight separations such
as the canister lid when tested with ballistic pendulum techniques.

Incorporation of the separation tests with the parachute flight tests was a logical
choice since all but two of the separations (canister lid and capsule/spacecraft)
occur as part of parachute deployment or during parachute descent. These
separations are pilot chute, main parachute, entry vehicle shell and penetrom-
eters. It should be noted that the addition of parachute testing to the separation
flights resulted in a compromised environmental simulation for the two vacuum
flight separations (canister lid and capsule/spacecraft). Trajectory analysis
indicated that the apogee of the trajectory must be restricted to a maximum of
170, 000 feet or less and the velocity at apogee must be low. In descending from
this apogee and low velocity the vehicle will accelerate to the correct velocity

at the deployment altitude. Descent from higher apogees will yield velocities
beyond the deployment envelope. An altitude of 170, 000 feet is within the sensible
atmosphere, and although the low velocities are providing very low dynamic
pressures (q= 0.1 1b/ft2), some aerodynamic loading exists on the separated
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hardware and vacuum flight is not truly simulated. It is felt that the loading is
not large enough to invalidate the test. The only alternative is to schedule inde-
pendent flight tests of the vacuum flight separations, and accept increased pro-
gram costs.

9.2 TEST PROGRAM

The recommended program for the combined separation and parachute full-scale
flight tests is the surface launched Little Joe II providing a high altitude trajec-
tory for a full-scale boilerplate mockup of the entry vehicle and its sterilization
canister. Vacuum flight separations are tested at apogee (170, 000 feet) and
parachute deployment and subsequent separations occur during descent from
apogee. The Little Joe II is a versatile vehicle which utilizes for main propul-
sion, clusters of Algol solid rocket motors in various staging combinations up
to a total of seven Algol motors. Flight path control is provided by an autopilot
driving aerodynamic fins and reaction gas jets. The test vehicle is a boilerplate
mockup in which the mass characteristics and external configuration of all sepa-
ration subassemblies duplicate operational configurations. Separation mechan-
isms and the parachute test conditions and repetitive checks of the separation
functions, are recommended for the program. Test conditions for the ten flights
are described in the Voyager full-scale parachute section (paragraph 8. 5. 1).

As in the case of the pre-Voyager full-scale parachute tests, the large dimen-
sions of the test vehicle reduce the potential launch techniques to the two choices:
surface launched Little Joe II or rocket climb after balloon release. Unlike the
pre-Voyager test, the Little Joe II was selected in preference to the balloon
approach because of the increased complexity of the balloon test vehicle. This
complexity was due to the trajectory requirements which eliminated vehicle spin
stabilization for flight path control (and TVC) and necessitated an active, closed-
loop flight control system consisting of an autopilot and outboard reaction motors.
As explained in the previous section, a trajectory apogee of 170, 000 feet or less
at low velocity is necessary. The balloon launched test vehicle must climb at a
very steep angle to achieve these apogee conditions, but the climb angle is
limited, due to the presence of the large diameter balloon above the vehicle.

The solution is to use a programmed climb which begins at acceptable climb
angles and becomes steeper after the balloon is cleared. The programmed

climb eliminates spin stabilization and requires the active control system. The
actively controlled vehicle represents a significant increase in complexity, which
will require development and flight testing schedules not compatible with the
Voyager flight test program schedules. The decision, therefore, went to the
existing vehicle.

9.3 LAUNCH VEHICLE CONFIGURATION

The significant features of the Little Joe II configuration required for this test
are 2 and 1 Algol rocket staging, controllable fins, 198 inch hammerhead ascent
shroud, four retrothrust Recruit rockets, and the pitch-roll gyro replaced with
rate gyro integration.
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The first-stage burn with two Algol rockets and second-stage burn with one
Algol require Algol 2B motors for tests to the high-energy end of the deployment
envelope, and Algol 1D motors for tests to the low-energy end. Another possi-
bility is to employ Algol 2B motors for the low-energy deployment and add extra
ballast. The controllable (not fixed) fin assemblies must be employed both for
ascent flight path control and pitch attitude maneuvers near apogee. The con-
trollable fin assemblies consist of not only the servo controlled aerodynamic

fin but also the reaction jet system used for the pitch attitude maneuvers.

The test vehicle diameter of 15 feet is greater than the basic 13-foot diameter
of the Little Joe II, and a hammerhead ascent shroud will be required. The
maximum diameter will be 198 inches. Experience with hammerhead shrouds
on the Little Joe II is limited to wind-tunnel tests of a 212-inch shroud for the
LEM. These tests showed no loss in fin effectiveness. Wind-tunnel tests, and
design and development of the specific shroud configuration will be required.

No retrothrust capability exists in the current versions of the Little Joe II. Pre-
liminary analysis revealed a retrothrust requirement which could be supplied

by four Recruit motors. These would be installed near the base of the vehicle
and inclined to the vehicle centerline such that they could exhaust through holes
cut in the side of the vehicle, Thrust would be rearward. There is plenty of
room for this installation and the structural changes are feasible according to
the contractor. The four Recruits will provide a 4-g deceleration for 1.5 sec-
onds resulting in a velocity decrement of 200 ft/sec. This large velocity decre-
ment is necessary since the parachute deployment occurs a relatively short

time later (10 to 20 seconds) and the possibility of a collision must be minimized.

The two large pitch attitude maneuvers (about 180 degrees) will result in unac-
ceptable cross coupling in the pitch-roll gyro. This problem is easily solved
by integrating the rate gyro outputs to get attitude data for the autopilot.

No test vehicle separation system need be designed for the test vehicle/Little
Joe II adapter. The operational spacecraft/capsule separation system will be
used since its evaluation is one purpose of the test. The canister afterbody and
spacecraft/capsule adapter will remain attached to the vehicle. Hardened sepa-
ration cameras, mounted on the canister afterbody, must be recovered after
the Little Joe II impact.

9.4 TEST VEHICLE CONFIGURATION

The major subassemblies of this test vehicle will be mockups of the operational
prototype. The subsystems being tested (viz., parachute and separation systems)
will be operational prototypes or as close to operational prototypes as the status
of the design and development permits. The major subassemblies are the steril-
ization canister lid and afterbody, entry vehicle shell, suspended capsule, space-
craft/capsule adapter and test vehicle/Little Joe II adapter. An inboard profile
of the test vehicle mounted within the ascent shroud of the Little Joe II launch
vehicle is shown in Figure 24,
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The first-stage burn with two Algol rockets and second-stage burn with one
Algol require Algol 2B motors for tests to the high-energy end of the deployment
envelope, and Algol 1D motors for tests to the low-energy end. Another possi-
bility is to employ Algol 2B motors for the low-energy deployment and add extra
ballast. The controllable (not fixed) fin assemblies must be employed both for
ascent flight path control and pitch attitude maneuvers near apogee. The con-
trollable fin assemblies consist of not only the servo controlled aerodynamic

fin but also the reaction jet system used for the pitch attitude maneuvers.

The test vehicle diameter of 15 feet is greater than the basic 13-foot diameter
of the Little Joe II, and a hammerhead ascent shroud will be required. The
maximum diameter will be 198 inches. Experience with hammerhead shrouds
on the Little Joe II is limited to wind-tunnel tests of a 212-inch shroud for the
LEM. These tests showed no loss in fin effectiveness, Wind-tunnel tests, and
design and development of the specific shroud configuration will be required.

No retrothrust capability exists in the current versions of the Little Joe II. Pre-
liminary analysis revealed a retrothrust requirement which could be supplied

by four Recruit motors. These would be installed near the base of the vehicle
and inclined to the vehicle centerline such that they could exhaust through holes
cut in the side of the vehicle. Thrust would be rearward. There is plenty of
room for this installation and the structural changes are feasible according to
the contractor. The four Recruits will provide a 4-g deceleration for 1.5 sec-
onds resulting in a velocity decrement of 200 ft/sec. This large velocity decre-
ment is necessary since the parachute deployment occurs a relatively short

time later (10 to 20 seconds) and the possibility of a collision must be minimized.

The two large pitch attitude maneuvers (about 180 degrees) will result in unac-
ceptable cross coupling in the pitch-roll gyro. This problem is easily solved
by integrating the rate gyro outputs to get attitude data for the autopilot.

No test vehicle separation system need be designed for the test vehicle/Little
Joe II adapter. The operational spacecraft/capsule separation system will be
used since its evaluation is one purpose of the test., The canister afterbody and
spacecraft/capsule adapter will remain attached to the vehicle, Hardened sepa-
ration cameras, mounted on the canister afterbody, must be recovered after
the Little Joe II impact.

9.4 TEST VEHICLE CONFIGURATION

The major subassemblies of this test vehicle will be mockups of the operational
prototype. The subsystems being tested (viz., parachute and separation systems)
will be operational prototypes or as close to operational prototypes as the status
of the design and development permits. The major subassemblies are the steril-
ization canister lid and afterbody, entry vehicle shell, suspended capsule, space-
craft/capsule adapter and test vehicle/Little Joe II adapter. An inboard profile
of the test vehicle mounted within the ascent shroud of the Little Joe II launch
vehicle is shown in Figure 24.
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this time in the program. Mass and moment of inertia of the canister lid must
duplicate prototype values to properly simulate operational dynamics at separa-
tion. The entry-vehicle shell, which is a lightweight honeycomb of very large
dimension, will require a manufacturing development program and hence will
probably not be available in time for the flight test program. The shell mockup
must match the prototype in mass and moment of inertia. The mockup will be

a ring-stiffened monocoque shell which is inherently a heavier fabrication than
the prototype honeycomb. No problem is anticipated in matching the mass char-
acteristics, however, because no heat shield is required on the test vehicle and
the weight saved can be accommodated in the structure. The suspended capsule
(or internal structure) must not only match prototype mass characteristics but
its external configuration, including small protuberances (if any), must be care-
fully duplicated. This is necessary to properly test possible interference and
fouling between the parachute attachment harness and adjacent structure during
the deployment sequence. Similar care must be exercised in the detailed con-
figuration of other subassembly mockups, such as the canister afterbody, to
ensure that the test of subassembly separations will be a valid check of possible
interferences. The de-orbit rocket nozzle which protrudes from the suspended
capsule in the vicinity of the parachute harness, must also be simulated for this
reason,

Although the inboard profile shows a complete de-orbit rocket case, only the
nozzle and that part of the case that protrudes need be duplicated. In fact, it
may be necessary to minimize the rocket mockup to save weight, in order to
accommodate the weight force simulation. This may also require weight econ-
omies in the design and fabrication of the suspended capsule structure. To
illustrate this point, the prototype weight of the suspended capsule (not including
the parachute) is 940 pounds., For the weight force simulation, this weight must
be reduced to 39 percent, or 367 pounds. The prototype structural weight is
150 pounds, the expended rocket case is 49 pounds, and the estimated flight test
telemetry instrumentation, power supply, etc. weight is 125 pounds. The total
is 324 pounds, which provides a margin of 43 pounds or 12 percent, a rather
small margin for growth., Shot or dust ballast weighing 573 pounds is ejected
from the suspended capsule during the parachute descent to reduce the capsule
weight to the 367 pounds required for the weight force simulation. Additional
ballast weighing 420 pounds is jettisoned after vehicle separation from the Little
Joe II, but before parachute deployment. This ballast compensates for the pro-
pellant mass that would have been expended by the de-orbit rocket and TVC sys-
tem. The vehicle is free-falling and accelerating (by gravity) when this ballast
is jettisoned and hence the shot or dust must be forcibly ejected by mortar,
mechanical spring, or other suitable system.

Separation performance is recorded by cameras and separation sensors such
as spring-probe or lanyard-spool devices. Canister lid separation is photo-
graphed by two cameras mounted on the canister afterbody which view the lid
through observation parts in the entry vehicle shell. The cameras are located
near the maximum diameter and at opposite sides of the vehicle as shown in
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Figure 24. These cameras also record separation of the test vehicle from the
Little Joe II. The cameras must be hardened to survive the Little Joe II ground
impact. Another camera mounted on the suspended capsule photographs the
separation of the entry vehicle shell. Two other cameras also mounted on the
suspended capsule but facing rearward monitor parachute performance during
deployment and descent.

A parachute mounted on the inside of the entry vehicle shell is used for shell
recovery for range safety. There is a tradeoff here, in that the parachute will
reduce impact velocity but also increase wind drift magnitudes. The latter
could be a deleterious factor in launch aborts due to wind drift/range safety
conflicts.

9.5 FLIGHT SEQUENCE

The flight sequence for the parachute/separation test is illustrated in Figure 25.
The Little Joe II is launched at a pitch attitude of 84 degrees, by ignition of the
two first-stage Algol 2B rockets. Second-stage ignition of the single Algol 2B
motor occurs at 41, 000 feet at t + 60 seconds. Second-stage burnout occurs at
128, 000 feet at t + 126.4 seconds. The ascent shroud is jettisoned at 152, 000
feet at t + 145 seconds. Shortly after shroud jettison, the vehicle pitch attitude
is reversed and stabilized at this attitude by the reaction gas jet system. Apogee
occurs at 170, 000 feet at t + 175 seconds where the canister lid is jettisoned.

The pitch attitude is again reversed and stabilized by the reaction jet system.
The entry vehicle is then separated from the canister afterbody which remains
attached to the booster. retrorockets are fired and the entry vehicle descends

at increasing velocity towards the deployment altitude. Before reaching the de-
ployment altitude, ballast which simulates the mass of the de-orbit rocket pro-
pellant is jettisoned. The pilot and main parachutes are deployed at 140, 000

feet where the vehicle velocity will be about 1270 ft/sec (M = 1.2) and the dynamic
pressure will be 4 1b/ft2. The entry-vehicle shell is separated at the peak open-
ing shock load. This shell may or may not be recovered by parachute depending
upon range safety requirements. During the parachute descent, the penetrom-
eters are released. The vehicle is recovered after impact for postflight exam-
ination of the parachute and separation systems.

9.6 ALTERNATIVE TEST METHOD CONSIDERED - BALLOON LAUNCHED
FULL SCALE TEST VEHICLE

9.6.1 Test Program

Although not chosen as the recommended test method, the program is des-
cribed because of possible interest in an unusual test technique,.

This alternative program for the full-scale tests of the parachute and sepa-

ration systems consist of a rocket-propelled climb of the test vehicle after
balloon release at high altitude. Some separation systems are tested at
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apogee and the rest during and after the parachute deployment which occurs
during descent from apogee. The test vehicle is a boilerplate mockup of
both the prototype entry vehicle and the sterilization canister. A Surveyor
rocket and two Ranger rockets are used to propel the vehicle in a pro-
grammed climb under control of an active, closed-loop flight control system.
The balloon is a zero pressure-type fabricated of Mylar film reinforced

with bonded Dacron scrim. Balloon sizes between 4 and 20 million cubic
feet will be required depending on the desired test conditions,

The performance of the vehicle is demonstrated in Figure 26, which consists
of the vehicle trajectories plotted in coordinates of altitude versus velocity
for various launch altitudes. Two-stage rocket firing is used for the powered
climb. The two Ranger rockets are fired first with the vehicle stabilized

at an attitude angle of 60 degrees (nose-up). Ranger rocket burnout, which
is indicated on the trajectories, is followed by a 5-second ascent coast dur-
ing which the vehicle attitude is pitched up to 90 degrees and stabilized at
this attitude during the Surveyor burn. The vehicle decelerates during the
5-second coast due to drag and gravity as shown by the curves. A major
part of the velocity and altitude increase is provided by the Surveyor rocket
as is evident. After Surveyor rocket burnout, the vehicle ascends towards
apogee where the velocity has dropped to low values (about 200 ft/sec). At
this point the dynamic pressure is very low, as indicated by the contour

line of constant dynamic pressure (q = 0,1 1b/ft2). Note that all the apogee
occur at dynamic pressures of q = 0.1 1b/ft2 or less regardless of launch
altitude. This is important for initiation of the vacuum flight separations

at apogee. As the vehicle descends from apogee, velocity increases under
gravitational acceleration and the trajectory passes through the deployment
envelope as shown in Figure 26, The test condition attained within the en-
velope depends on the apogee altitude which in turn is a function of the launch
altitude, As indicated in the figure, launch altitudes between 90, 000 and
120, 000 feet will provide complete coverage of the operational envelope.
Discrete time marks on the trajectories indicate that the time interval be-
tween apogee and deployment varies between 25 and 40 seconds. This dura-
tion should be adequate for the separation functions and attitude maneuvers
which must be completed during this interval.

The trajectories in Figure 26 were computed before the vehicle was designed,
and it was assumed that the thrust lines of the Surveyor and Ranger rockets
were aligned parallel to the vehicle centerline. During the configuration
layout it was necessary to align the Ranger rocket thrust lines 30 degrees

to the vehicle centerline. This will reduce the Ranger rocket total impulse
by 13.4 percent. Another trajectory was computed (Figure 27) to check the
effect of this total impulse reduction. Comparing Figure 26 with Figure 27
indicates that the effect is equivalent to a reduction of 5, 000 feet in the
launch altitude, which is not significant, Figure 26 can be used for refer-
ence purposes by simply accounting for this launch altitude correction,
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between staging, TVC during Surveyor rocket burn, and two 180-degree
pitch-attitude maneuvers after burnout. The inertial reference will be
established on the ground prior to balloon launch.

9.6.4 Flight Sequence

The balloon sequences of pre-launch, launch, ascent and test vehicle re~
lease are identical to the full-scale parachute test described in Paragraph
8.3.4. The sequences subsequent to vehicle release are entirely different
and are described below. The flight sequence is illustrated in Figure 29.

The vehicle is released from the balloon at different altitudes to achieve
different parachute deployment conditions. As a typical case, release at
an altitude of 110, 000 feet will be discussed. This will provide the deploy-
ment condition: M = 1,0, q = 4.5 1b/ft2., The vehicle is released in a 60-
degree climb attitude and the TVC is immediately activated. The two
Ranger rockets are ignited 3 seconds after release. During burn the TVC
system stabilizes the vehicle at the 6 0-degree attitude and the velocity in-
creases to 310 ft/sec at burnout 9.6 seconds later. The gain in altitude is
negligible since the vertical velocity at ignition was 100 ft/sec downward
(due to 3 second free~fall), total velocity increase is small, and the burn
time is short. The vehicle coasts for 5 seconds during which time the ve-
hicle attitude is rotated to 90 degrees nose-up. The Surveyor rocket is
ignited and the vehicle climbs at an increasing flight path angle which reaches
78 degrees at burnout, 38.7 seconds later. The altitude at burnout is

132, 000 feet and the velocity is 1200 ft/sec. As the vehicle coasts upwards,
its attitude is changed by the TVC system such that it will be flying back-
wards at apogee where the sterilization canister lid is jettisoned. Apogee
is reached 35 seconds after burnout at an altitude of 151, 000 feet and a
velocity of 200 ft/sec. The dynamic pressure is less than 0.1 1b/ft2 so the
aerodynamic loads on the lid at separation are small. After lid separation
the vehicle attitude is changed to the forward direction by the TVC system
and the entry vehicle is separated from the canister afterbody, and propul-
sion structure.

Accelerating while free-falling from apogee, the vehicle reaches the deploy-
ment envelope at 130, 000 feet, M = 1.0 and q = 4.5 1b/ft2, for this particular
case., The deployment envelopment is reached about 37 seconds after apogee.
The subsequent deployment and separation sequences are identical to the
Little Joe II parachute/separation test described in Section 9. 5.
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10. 0 HEAT SHIELD PERFORMANCE FLIGHT TESTS

10.1 TEST REQUIREMENTS AND OBJECTIVES

10. 1.1 General Considerations

Analytical performance prediction techniques which are based on ground

test evaluation of the ablation materials are used in the design of the heat
shield system. The ground test evaluation is subject to a number of
limitations and the degree of confidence in the performance prediction
techniques suffers accordingly. Compensation can be provided by increas-
ing design conservatisms which include increasing heat shield thickness at
the expense, of course, of increased weight. This weight increase can be-
come significant depending on the degree of confidence in the prediction
techniques. Adoption of design conservatisms as a solution to the problem
will be limited, therefore, by weight allowances. Flight test evaluation of
the ablation materials is not subject to the same limitations as ground test-
ing and the degree of confidence in the prediction techniques can be improved.
The need for flight tests, therefore, hinges on the balance between confi-
dence in the prediction techniques and allowable conservatism. This balance
has been judged inadequate and flight tests are recommended.

The recommendation for flight tests was based on:

1. Simultaneous match of stagnation pressure, heat flux, and enthalpy
in existing ground test facilities is not possible (but is possible in flight
tests).

2. The transient character of the heating environment is difficult to
match in ground test facilities.

3. The candidate materials have never been flight tested and hence
there is no opportunity to extrapolate, even on a gross basis, a com-
parison with ground test results.

4. In general, past experience has verified that ground test results
can differ from flight test results either in optimistic or conservative
directions,

The judgement on the allowable conservatisms is based on the fact that the
heat shield weight is 15 to 20 percent of the total entry vehicle weight and
any conservatism in its design will represent a significant increase in the
entry vehicle weight. This is especially critical when viewed in light of the
fact that the vehicle payload weight is only 13 percent of the total and the
current margin for growth is 6 percent.
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10. 1.2 Specific Requirements and Objectives

The flight envelope parameters affecting the heat shield performance (tem-
perature response and mass-loss characteristics) are the entry velocity

(V. ), entry angle (y,), ballistic coefficient (m/CpA), and angle of attack (a).
Their influence, however, is exerted through the following derivative en-
vironmental parameters; aerodynamic heating (Q), heating rate (g), enthalpy
(m/R’I‘0 ), pressure (p), shear (r), duration of the heat pulse, as well as the
atmospheric composition.

Design and flight experience, plus consideration of the postulated ablation
mechanism for the candidate ablators, indicate that the ablation process is
best simulated by providing simultaneous duplication of the heating rates,
enthalpy and pressure within reasonable limits. The simultaneous duplica-
tion is provided by the selection of the proper combination of the flight en-
velope parameters: V_, y, » a, » and m/ChA. Fortunately, direct simulation
of the heating pulse is not necessary because the combined dynamics and
heat pulse simulation would be impossible to attain for this particular case.
The flight test should be tailored to provide a heat pulse that is only typical
of the anticipated heating, with due recognition of thermal protection re-
quirements, booster limitations and instrumentation requirements.

Since entry out of orbit results in low stagnation enthalpies, the entry
velocity for the Earth test should be restricted to values near those for
Mars to ensure accurate wall enthalpy interactions (other than those intro-
duced by atmospheric composition). A tradeoff between simulation of the
total integrated heating and heating rates is possible by variation of the
flight envelope, but in any case a transient history similar to Mars entry,
is obtained.

Typical Mars entry heating pulses for various stations are illustrated in
Figure 30 and for the maximum diameter station in Figure 31. Figure 31
indicates a discontinuous variation in the heating which is associated
with the rapid variation in the stagnation point location. In order

to simulate this characteristic pulse, the dynamics would have to be sim-
ulated. The simulation of the exact heat pulse is not critical for each body
station. It is required instead that the heating on the flight test vehicle at

a particular body station be related to some point on the Mars entry vehicle,
the vehicle scale being compatible with this requirement.

The simulation possible with an Earth entry is demonstrated in Figure 32.
Heating rates are presented as a function of stagnation enthalpy, and local
pressures are indicated at discrete points. Two points on the body (stag-
nation point and sonic point) are compared with the corresponding points
for the Mars entry. Although there is no one-to-one correspondence of
vehicle stations between Earth and Mars entry test vehicles, there is an
overlap providing points on the Earth test vehicle which match a region on
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the Mars entry vehicle. In such region a simultaneous, transient simula-
tion of the heating rates at appropriate enthalpy levels is possible with
small differences in the pressures. A comparison of the Mars and Earth
entry heat pulses (Figure 33) shows that simultaneous simulation of the
total integrated heating and complete timewise heating-rate distribution is
not feasible. It is concluded that an Earth entry test although not executed
in the same atmospheric composition as Mars would provide an excellent
test of thermal protection system performance. The atmosphere composi-
tion effect on performance would have to be demonstrated in the ground
tests.

The degree of simulation of the Mars entry in ground test facilities was in-
vestigated as well by superimposing their operating characteristics on the
Mars entry environmental envelope previously shown in Figure 32. The
resulting comparison is presented in Figure 34. This figure demonstrates
the difficulty of obtaining low heating rates at the critical (for design) low
enthalpy levels, although the range of enthalpies is covered. Furthermore,
the pressure simulation is off by an order-of-magnitude which may be im-
portant in evaluation of the ablation phenomena. Another well known prob-
lem (not illustrated in Figure 34), is the difficulty of simulating timewise
variations of the critical parameters in ground facilities. In addition to
the proper simulation of the environment, it is important to conduct tests
on materials produced to the specification required of the final product,
and on a scale approaching the prototype hardware. It is possible in prin-
ciple to satisfy the material specification but not the scale requirement in
ground testing. It is thus concluded that although design information may
be acquired in the ground testing, the verification of the performance in
these facilities will not provide the degree of confidence in the design that
is required.

10. 1.3 Aero-Thermodynamic Considerations

Although aerodynamic or aerothermodynamic considerations per se do not
constitute a flight test requirement, the flight test will provide additional
information germane to the aerodynamic performance predictions. As with
the heat shield, it is impossible to simulate all the parameters which in-
fluence the vehicle performance as well as flow field by means of ground
tests. As a valuable adjunct to the heat shield tests, useful data in the
form of pressure and heating distributions, as well as vehicle coefficients,
can be obtained. The tests will provide data at higher density ratios than
are obtained in ground tests. In addition larger variations in flow proper-
ties along the boundary-layer edge can be obtained. While the test is pri-
marily tailored for the heat shield, the resulting flight histories and param-
eter variation (Mach and Reynolds Nos. and density ratio) are good simula-
tions of those anticipated for design purposes.
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The inspection of Mars entry conditions also reveals that an Earth entry
test is feasible utilizing a heat-sink thermal protective system. This con-
cept will allow ''calibration" of ablator flights and provide definition of the
environment unencumbered by ablation products and mass changes. Beryl-
lium must be used for the heat sink to achieve desired entry weights, as
demonstrated in Table XXVI.

10. 1.4 Scaling

Selection of minimum scaling for the flight test vehicle is very desirable
from the viewpoint of minimum launch vehicle capabilities and thc associated
savings in cost. Unfortunately, significant reduction of the vehicle scale
increases the heating flux to the point where adjustment of the other sim-
ulation parameters can no longer provide adequate simulation of the Mars
heating environment. The studies indicated that the minimum suitable
scaling is approximately 100 to 120 inches in vehicle diameter. Figure

32 which was previously discussed shows that a 120-inch diameter vehicle
can provide a point on the test vehicle which adequately simulates the Mars
stagnation point heating. Further reduction of the test vehicle scale will
drive the heating flux at any point on the body beyond the Mars stagnation
point heating and eliminate the possibility of simulating the Mars heating
environment.

10. 2 TEST PROGRAM

The recommended program for the subscale heat shield tests consists of a
100-inch blunt cone test vehicle, launched by an Atlas SLV (OAO) on a direct
ascent trajectory, with reentry beginning at ascent burnout. Two test vehicle
configurations are required: one with a beryllium heat sink and the other with
a heat shield consisting of the material to be evaluated.

Three flights are recommended: one with the heat sink and two with the heat
shield. The prime objective of the heat-sink test is to measure the entry
heating environment unencumbered by the processes of ablation. All three
flights utilize the same reentry conditions: V., = 15,000 ft/sec and y, =0
degrees, which were selected in combination with the other simulation param-
eters (vehicle size and ballistic coefficient) to provide the desired heating en-
vironment., Two heat shield flights are scheduled to obtain repetitive measure-
ments. The heat shield vehicles are recovered with a parachute and water
flotation equipment for post flight examination of the heat shield material. Re-
covery of the heat-sink vehicle is not required.

As previously explained, the size of the test vehicle could not be significantly
reduced below 100 inches in diameter in order to properly simulate the Mars
heating. The large vehicle diameter eliminated less costly launch vehicles

such as Scout and forced consideration of the Atlas and Titan class of boosters.
The Atlas SLV (OAO) was selected because of its availability, its payload interface,
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TABLE XXVI

HEAT SINK AND HEAT SHIELD THICKNESS AND WEIGHT
FOR EARTH ENTRY TEST

(V, = 15,000 fps, y, = 0° a, = 0°
(D = 120, m/CDA = 0.13
Material Purple Blend
backface Beryllium(l) Copper(2) Mod 5(3)

S/Ry 500°F 500°F 500°F at bond
0.0 0. 85 inches 0.90 inches 0.26 inches

1.5 0.36 0.42 0.18

2.5 0.31 0.34 0.16

4,5 0.27 0.27 0.14

Total Weight 257
(pounds) (113 pounds for 975 °F) 1360 49

(1) No substructure required
(2) Substructure required

(3) On reference Mars vehicle honeycomb substructure.
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and the similarity between the OAO ascent program and that required for this
program, The OAO program is currently scheduled for ten years which hope-
fully, will ensure the availability of Atlas boosters for the often delayed Voyager
program. The payload interface diameter for this booster is 120 inches which
is ideal for mating with the 100-inch diameter test vehicle by means of a coni-
cal adapter,

The zero-degree reentry angle was an unusual requirement and two launch ve-
hicle trajectories for implementing this angle, were examined. One was a
""roller coaster' trajectory, which is accomplished by first reversing pitch
attitude after aimospheric exit and firing the sustainer engine downward, After
the trajectory turns downward, the pitch attitude is reversed again to thrust
upwards such that a pull out maneuver occurs. The objective is to pull out to
level flight (y, = 0 degrees) at the reentry altitude. The other approach was
the one selected. The ascent trajectory is programmed to approach the reentry
altitude (400, 000 feet) asymptotically thus providing level flight (or Yo = 0 de-
grees). The direct ascent was preferred because it was very similar to an
existing ascent program (OAQO) and represented a more reliable approach since
extreme pitch attitude maneuvers were not required as in the ''roller coaster"
trajectory.

10. 3 LAUNCH VEHICLE CONFIGURATION

The SLV-3(OAO0) version of the Atlas with a modified Surveyor ascent shroud
is recommended for this test. This version of the Atlas has a 120-inch diam-
eter interface with the payload at the forward tank ring. The OAO fixed adapter
which is a cylindrical section 30 inches long mates with the forward tank ring.
The forward adapter ring mates with a conical adapter for the test vehicle and
the ascent shroud in a three-way joint, Since the overall length of the test
vehicle is very short, the Surveyor shroud is shortened by removing its cylin-
drical section and retaining only the conical section. Since the test vehicle is
separated from the Atlas at the beginning of reentry, retropropulsion of the
Atlas may be necessary. A cluster of solid rockets would be added for this
purpose. The ascent shroud weight is 1000 pounds, the payload conical adapter
is 200 pounds, the OAO fixed adapter 320 pounds, and the test vehicle weight
is 500 pounds for a total of 2020 pounds. This total payload weight is well
within the capability of the Atlas for the suborbital performance required.

10.4 TEST VEHICLE CONFIGURATION

The heat shield flight test vehicle is a 100-inch diameter (approximately half-
scale) boilerplate mockup which simulates the external aerodynamic shape of
the operational prototype. Two versions are required: one which utilizes a
heat sink for thermal protection and the other which employs the heat shield
material which is to be evaluated. Each vehicle weighs 500 pounds. Ballast is
added to the heat shield vehicle to match the heat sink vehicle weight. The
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internal structure does not simulate the prototype configuration.

functional, providing support for subsystems and components in a configuration
which will yield a favorable c. g. location.

Its design is

No separations are utilized except

for deployment of the recovery parachute in the heat shield material tests. An

inboard profile of the vehicle, mounted on its launch vehicle, is shown in Figure

35,

The important subsystems and components are tabulated below:

1,

2,

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

Heat shield (or heat sink)

Entry vehicle shell

Internal structure

Atlas/test vehicle adapter
Atlas/test vehicle separation system
FM/FM Telemetry

Battery Power supply
Programmer and control circuitry
Pressure sensors#*
Calorimeters

Ablation gages™

Thermocouples

Accelerometers

Rate gyros

Recovery parachute®

Foam buoyancy material*

C-band tracking beacon

SARAH beacon*

Spin rockets

Tape recorder

.Excluded from heat-sink test

"Excluded from heat shield material test
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The entry vehicle shell is a monocoque shell stiffened against buckling by a
skeleton frame of angles and a fabricated circumferential ring at the maximum
diameter. The heat shield material is bonded to the monocoque shell. The
beryllium heat sink vehicle does not require support by a monocoque shell, its
thickness and strength are adequate. The internal structure and circumferential
ring are riveted directly to the beryllium heat sink. The ring mates with a
ring-stiffened conical adapter which transmits the evenly distributed launch
loads to the Atlas interface. The internal structure is a truss assembly welded
to the shell frame. The subsystems are mounted on this truss as shown in the
inboard profile.

The separation system consists of eight ball-lock mechanisms evenly distributed
around the circumferential interface with the launch vehicle adapter. Spin
rockets are mounted on the outer ring of the vehicle. Itis not certain that
vehicle spin stabilization is required since the vehicle is released from the
Atlas very close to the sensible atmosphere and at zero-angle of attack. A
detailed dynamic analysis will be required to resolve this question.

For the heat shield tests, recovery and pestflight examination of the heat shield
is important. The recovery system consists of a descent parachute, low density
polystyrene foam for buoyancy, C-band tracking beacon, SARAH recovery
beacon and dye markers.

The heat sink and heat shield instrumentation sensors such as pressure sensors,
calorimeters, ablation gages, and thermocouples will be distributed in patterns
to give both meridional and longitudinal coverage. Data during blackout will be
tape recorded and replayed over several cycles after exit from blackout as in-
dicated by a timer. Accelerometers will be installed at the vehicle c. g. as
indicated in the inboard profile.

10.5 FLIGHT SEQUENCE

The flight sequence for the subscale heat shield test is illustrated in Figure 36.
The zero-degree reentry angle is an unusual requirement but is easily imple-
mented by terminating the powered ascent trajectory at the reentry conditions,
without the usual long range ballistic flight between burnout and reentry. The
ascent trajectory is similar to that required for the low altitude orbit of the
OAO satellite. The desired ascent trajectory is implemented by a pitch rate
program during sustainer engine burn. The ascent shroud is jettisoned at

300, 000 feet or higher during sustainer engine burn. The pitch rate program
provides an asymptotic approach to the reentry altitude, 400, 000 feet. The
reentry conditions (V, = 15, 000 ft/sec and y, = 0 degrees) are achieved at

400, 000 feet. The sustainer engine is cutoff, the entry vehicle separated, and
the solid rocket retromotors ignited, in that order. Angle of attack at separa-
tion is zero degrees. No vernier engine is required because the accuracy of the
sustainer engine cutoff is more than adequate for this mission. Since separation
occurs close to the sensible atmosphere and at zero-angle of attack, spin
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stabilization of the vehicle may be unnecessary. Peak heating of the vehicle
will occur near 200, 000 feet. During blackout, data is tape recorded and re-
transmitted later. Data is telemetered in real time both before and after
blackout. After reaching terminal velocity, the recovery parachute is deployed
to recover the heat shield for postflight examination. The heat-sink model is

not recovered.
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APPENDIX A

PRELIMINARY PROGRAM PLANNING
FOR 1971 PROBE/LANDER MISSION
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shell will be initiated in early 1966. This scheduling is necessary in order
to properly factor the results into the design cycle for the flight capsule.

A full-scale flight capsule earth entry system test is scheduled in mid-1970.

Earlier scheduling is desirable but not possible if ground qualified hard-
ware is to be used for this test.

2,1.2 Design
A single, large multi-mission vehicle shell, 15 to 16 feet in diameter, will
be used for all missions, with only minor modifications required in the

shell design.,

The 1971 mission will utilize a parachute descent system and a hardlanded
payload protected by passive impact energy absorbers.

RTG's will not be used in 1971 or 1973.

2.1.3 Sterilization and Manufacturing

The basic techniques for meeting the NASA planetary quarantine specifica-
tions will be that of viable organism population control (burden control)
during assembly, encapsulation of the flight capsule within a rigid sterili-
zation container, and dry-heat terminal sterilization of the flight capsule
within its sterilization container.

The manufacture of parts and components will take place in conventional
facilities.

Payload assembly will be performed in Class 100 facilities per Federal
Specification 209.

Major structural elements will be of conventional manufacture but are
surface-cleaned and treated with ETO prior to final assembly and terminal

sterilization.

Final assembly and acceptance will be conducted at Cape Kennedy in accord-
ance with NASA's direction.

2.1.4 Flight Qualified Hardware

Two flight capsules will be launched in 1971; each from a separate launch
pad.

Two spare flight capsules will be provided as backup for the 1971 launch.
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Each complete flight capsule set (flight articles plus spares) will have a .
spare payload assembly available for substitution.

Each set of components and subsystems will have 100 percent spares avail-
able for substitution during assembly.

2.2 CRITICAL SCHEDULE ACTIVITIES

The events whose activities are considered critical to the schedule success
are those relating to the development and conduct of the flight test programs,.
Recognizing this, considerable attention was given early in the study to the re-
quirements for development of flight tests.

It will be necessary to initiate the planning and test article system design very
early in the program, This will permit the acquisition of the data necessary
to refine the design prior to its release for systems level demonstrations and
mission operation use.

If a combination of subscale and full-scale high-altitude rocket tests of the
parachute be selected, early prosecution of the subscale tests is recommended.
These early tests are not mandatory but are recommended for extra insurance
against unexpected development problems, The subscale parachute is the only
one that can be executed as early as shown because it utilizes a test payload
that only simulates mass. The other tests employ mockups of the capsule and
its subsystems in which mass, geometry, and functions are simulated, and
hence must await completion of at least the flight prototype system design and
subsystem functional specifications. In order to facilitate an early flight test
schedule for these items, flight test planning, test article system design, and
subsystem functional specifications should proceed simultaneously with the
same developments for the flight prototype during Phase I. Detail design of
the subsystems and subcontracting can then begin at the initiation of Phase II.
Approximately nine months are allowed for completion of the detail design,
fabrication, assembly, and checkout for the full-scale parachute tests and the
aerothermo ballistic reentry tests. This will permit completion of the flight
tests approximately 3 months prior to final drawing release for the test items.

A full-scale Earth entry test is scheduled in mid-1970. It would be desirable
to schedule this test earlier, but since ground-qualified hardware is required
for this test, earlier scheduling is not feasible.

3,0 WORK BREAKDOWN STRUCTURE

The work breakdown structure (WBS) identified (through successive stages of
subdivision) the hardware, services, functions, support equipment, and facil-
ities required in the performance of a program. It provides the basis for:
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1. Uniform planning and program visibility

2. Assignment of responsibilities

3. Monitoring progress

4. Networking

5. A framework for achieving cost visibility

6. Defining required end items of equipment, services, and facilities.

Figure A-2 depicts a version of the WBS developed during Part I of the study.
The major areas of work identified are:

Project Controls

Procurement/Production Management

Product Assurance

Systems Integration

Flight Capsule - Development

Flight Capsule - Qualification

Flight Capsule - Operational/Flight Units

Operational Support Equipment - Development

Operational Support Equipment - Qualification

Operational Support Equipment - Deliverable
These are all identified at 'level 2'' on the WBS and represent the initial sub-
division of the total program. Continued subdivision of the above work areas
and hardware into lower levels will define the program work requirements and
the contract end items more accurately. Having identified the contract end
items, work packages which define specific activities and functional responsi-
bilities may then be established. At this level, detailed schedule and cost in-
formation are developed.
Prior to NASA's redirection of the programs effort, Part 2 of the study effort
was to involve the detailed subdivision of the WBS, the identification of ''contract"

end items and their major components, and the assignment of a coding scheme
to WBS elements for cost collection and monitoring purposes. Work packages
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would then have been identified and detailed schedule networks and cost data
developed. Integrating the schedule and cost data developed at each level of
the WBS would provide total schedule and cost requirements for the program.

4,0 HARDWARE REQUIREMENTS

Figure A-3 is a preliminary identification of the levels, types, and quantities
required to satisfy and support the development, qualification, and operational
needs for a sterilized flight capsule, within the period of performance shown on
the master phasing chart. The table is arranged to present the preliminary
hardware types and quantities needed to support the program requirements for
development, qualification, and mission operation. Figure A-4 presents the
summary of hardware usage and the estimated completion dates for the qualifi-
cation and flight hardware article.

4.1 FLIGHT QUALIFIED HARDWARE

The total quantities of flight qualified hardware, including spares, required to
support the 1971 launch opportunity was given in paragraph 2. 1. 4.

4.2 DEVELOPMENT AND QUALIFICATION HARDWARE

The quantities shown for the development and qualification program reflect
schedule constraints which preclude the use of the same test article for more
than one type of development or system testing.

Prior to NASA's redirection, Part II of the study would have entailed a refine-
ment of the detail requirements to support the development and qualification of
the selected system. This would have involved further examination of the state-
of-the-art of the hardware to be used and the necessary development and qualifi-
cation procedures. Hardware needs versus schedule requirements would have
been investigated in detail to determine whether the use of a test article for
many tests can be made compatible with the schedule, thereby reducing hard-
ware,
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